Metamath Proof Explorer


Theorem nrgdsdi

Description: Distribute a distance calculation. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Hypotheses nmmul.x X = Base R
nmmul.n N = norm R
nmmul.t · ˙ = R
nrgdsdi.d D = dist R
Assertion nrgdsdi R NrmRing A X B X C X N A B D C = A · ˙ B D A · ˙ C

Proof

Step Hyp Ref Expression
1 nmmul.x X = Base R
2 nmmul.n N = norm R
3 nmmul.t · ˙ = R
4 nrgdsdi.d D = dist R
5 simpl R NrmRing A X B X C X R NrmRing
6 simpr1 R NrmRing A X B X C X A X
7 nrgring R NrmRing R Ring
8 7 adantr R NrmRing A X B X C X R Ring
9 ringgrp R Ring R Grp
10 8 9 syl R NrmRing A X B X C X R Grp
11 simpr2 R NrmRing A X B X C X B X
12 simpr3 R NrmRing A X B X C X C X
13 eqid - R = - R
14 1 13 grpsubcl R Grp B X C X B - R C X
15 10 11 12 14 syl3anc R NrmRing A X B X C X B - R C X
16 1 2 3 nmmul R NrmRing A X B - R C X N A · ˙ B - R C = N A N B - R C
17 5 6 15 16 syl3anc R NrmRing A X B X C X N A · ˙ B - R C = N A N B - R C
18 1 3 13 8 6 11 12 ringsubdi R NrmRing A X B X C X A · ˙ B - R C = A · ˙ B - R A · ˙ C
19 18 fveq2d R NrmRing A X B X C X N A · ˙ B - R C = N A · ˙ B - R A · ˙ C
20 17 19 eqtr3d R NrmRing A X B X C X N A N B - R C = N A · ˙ B - R A · ˙ C
21 nrgngp R NrmRing R NrmGrp
22 21 adantr R NrmRing A X B X C X R NrmGrp
23 2 1 13 4 ngpds R NrmGrp B X C X B D C = N B - R C
24 22 11 12 23 syl3anc R NrmRing A X B X C X B D C = N B - R C
25 24 oveq2d R NrmRing A X B X C X N A B D C = N A N B - R C
26 1 3 ringcl R Ring A X B X A · ˙ B X
27 8 6 11 26 syl3anc R NrmRing A X B X C X A · ˙ B X
28 1 3 ringcl R Ring A X C X A · ˙ C X
29 8 6 12 28 syl3anc R NrmRing A X B X C X A · ˙ C X
30 2 1 13 4 ngpds R NrmGrp A · ˙ B X A · ˙ C X A · ˙ B D A · ˙ C = N A · ˙ B - R A · ˙ C
31 22 27 29 30 syl3anc R NrmRing A X B X C X A · ˙ B D A · ˙ C = N A · ˙ B - R A · ˙ C
32 20 25 31 3eqtr4d R NrmRing A X B X C X N A B D C = A · ˙ B D A · ˙ C