Metamath Proof Explorer


Theorem nrginvrcn

Description: The ring inverse function is continuous in a normed ring. (Note that this is true even in rings which are not division rings.) (Contributed by Mario Carneiro, 6-Oct-2015)

Ref Expression
Hypotheses nrginvrcn.x X = Base R
nrginvrcn.u U = Unit R
nrginvrcn.i I = inv r R
nrginvrcn.j J = TopOpen R
Assertion nrginvrcn R NrmRing I J 𝑡 U Cn J 𝑡 U

Proof

Step Hyp Ref Expression
1 nrginvrcn.x X = Base R
2 nrginvrcn.u U = Unit R
3 nrginvrcn.i I = inv r R
4 nrginvrcn.j J = TopOpen R
5 nrgring R NrmRing R Ring
6 eqid mulGrp R 𝑠 U = mulGrp R 𝑠 U
7 2 6 unitgrp R Ring mulGrp R 𝑠 U Grp
8 2 6 unitgrpbas U = Base mulGrp R 𝑠 U
9 2 6 3 invrfval I = inv g mulGrp R 𝑠 U
10 8 9 grpinvf mulGrp R 𝑠 U Grp I : U U
11 5 7 10 3syl R NrmRing I : U U
12 1rp 1 +
13 12 ne0ii +
14 5 ad2antrr R NrmRing x U r + y U R Ring
15 1 2 unitss U X
16 simplrl R NrmRing x U r + y U x U
17 15 16 sseldi R NrmRing x U r + y U x X
18 simpr R NrmRing x U r + y U y U
19 15 18 sseldi R NrmRing x U r + y U y X
20 eqid 1 R = 1 R
21 eqid 0 R = 0 R
22 1 20 21 ring1eq0 R Ring x X y X 1 R = 0 R x = y
23 14 17 19 22 syl3anc R NrmRing x U r + y U 1 R = 0 R x = y
24 eqid I y = I y
25 nrgngp R NrmRing R NrmGrp
26 ngpms R NrmGrp R MetSp
27 msxms R MetSp R ∞MetSp
28 25 26 27 3syl R NrmRing R ∞MetSp
29 28 ad2antrr R NrmRing x U r + y U R ∞MetSp
30 11 adantr R NrmRing x U r + I : U U
31 30 ffvelrnda R NrmRing x U r + y U I y U
32 15 31 sseldi R NrmRing x U r + y U I y X
33 eqid dist R = dist R
34 1 33 xmseq0 R ∞MetSp I y X I y X I y dist R I y = 0 I y = I y
35 29 32 32 34 syl3anc R NrmRing x U r + y U I y dist R I y = 0 I y = I y
36 24 35 mpbiri R NrmRing x U r + y U I y dist R I y = 0
37 simplrr R NrmRing x U r + y U r +
38 37 rpgt0d R NrmRing x U r + y U 0 < r
39 36 38 eqbrtrd R NrmRing x U r + y U I y dist R I y < r
40 fveq2 x = y I x = I y
41 40 oveq1d x = y I x dist R I y = I y dist R I y
42 41 breq1d x = y I x dist R I y < r I y dist R I y < r
43 39 42 syl5ibrcom R NrmRing x U r + y U x = y I x dist R I y < r
44 23 43 syld R NrmRing x U r + y U 1 R = 0 R I x dist R I y < r
45 44 imp R NrmRing x U r + y U 1 R = 0 R I x dist R I y < r
46 45 an32s R NrmRing x U r + 1 R = 0 R y U I x dist R I y < r
47 46 a1d R NrmRing x U r + 1 R = 0 R y U x dist R y < s I x dist R I y < r
48 47 ralrimiva R NrmRing x U r + 1 R = 0 R y U x dist R y < s I x dist R I y < r
49 48 ralrimivw R NrmRing x U r + 1 R = 0 R s + y U x dist R y < s I x dist R I y < r
50 r19.2z + s + y U x dist R y < s I x dist R I y < r s + y U x dist R y < s I x dist R I y < r
51 13 49 50 sylancr R NrmRing x U r + 1 R = 0 R s + y U x dist R y < s I x dist R I y < r
52 eqid norm R = norm R
53 simpll R NrmRing x U r + 1 R 0 R R NrmRing
54 5 ad2antrr R NrmRing x U r + 1 R 0 R R Ring
55 simpr R NrmRing x U r + 1 R 0 R 1 R 0 R
56 20 21 isnzr R NzRing R Ring 1 R 0 R
57 54 55 56 sylanbrc R NrmRing x U r + 1 R 0 R R NzRing
58 simplrl R NrmRing x U r + 1 R 0 R x U
59 simplrr R NrmRing x U r + 1 R 0 R r +
60 eqid if 1 norm R x r 1 norm R x r norm R x 2 = if 1 norm R x r 1 norm R x r norm R x 2
61 1 2 3 52 33 53 57 58 59 60 nrginvrcnlem R NrmRing x U r + 1 R 0 R s + y U x dist R y < s I x dist R I y < r
62 51 61 pm2.61dane R NrmRing x U r + s + y U x dist R y < s I x dist R I y < r
63 16 18 ovresd R NrmRing x U r + y U x dist R U × U y = x dist R y
64 63 breq1d R NrmRing x U r + y U x dist R U × U y < s x dist R y < s
65 simpl x U r + x U
66 ffvelrn I : U U x U I x U
67 11 65 66 syl2an R NrmRing x U r + I x U
68 67 adantr R NrmRing x U r + y U I x U
69 68 31 ovresd R NrmRing x U r + y U I x dist R U × U I y = I x dist R I y
70 69 breq1d R NrmRing x U r + y U I x dist R U × U I y < r I x dist R I y < r
71 64 70 imbi12d R NrmRing x U r + y U x dist R U × U y < s I x dist R U × U I y < r x dist R y < s I x dist R I y < r
72 71 ralbidva R NrmRing x U r + y U x dist R U × U y < s I x dist R U × U I y < r y U x dist R y < s I x dist R I y < r
73 72 rexbidv R NrmRing x U r + s + y U x dist R U × U y < s I x dist R U × U I y < r s + y U x dist R y < s I x dist R I y < r
74 62 73 mpbird R NrmRing x U r + s + y U x dist R U × U y < s I x dist R U × U I y < r
75 74 ralrimivva R NrmRing x U r + s + y U x dist R U × U y < s I x dist R U × U I y < r
76 xpss12 U X U X U × U X × X
77 15 15 76 mp2an U × U X × X
78 resabs1 U × U X × X dist R X × X U × U = dist R U × U
79 77 78 ax-mp dist R X × X U × U = dist R U × U
80 eqid dist R X × X = dist R X × X
81 1 80 xmsxmet R ∞MetSp dist R X × X ∞Met X
82 25 26 27 81 4syl R NrmRing dist R X × X ∞Met X
83 xmetres2 dist R X × X ∞Met X U X dist R X × X U × U ∞Met U
84 82 15 83 sylancl R NrmRing dist R X × X U × U ∞Met U
85 79 84 eqeltrrid R NrmRing dist R U × U ∞Met U
86 eqid MetOpen dist R U × U = MetOpen dist R U × U
87 86 86 metcn dist R U × U ∞Met U dist R U × U ∞Met U I MetOpen dist R U × U Cn MetOpen dist R U × U I : U U x U r + s + y U x dist R U × U y < s I x dist R U × U I y < r
88 85 85 87 syl2anc R NrmRing I MetOpen dist R U × U Cn MetOpen dist R U × U I : U U x U r + s + y U x dist R U × U y < s I x dist R U × U I y < r
89 11 75 88 mpbir2and R NrmRing I MetOpen dist R U × U Cn MetOpen dist R U × U
90 4 1 80 mstopn R MetSp J = MetOpen dist R X × X
91 25 26 90 3syl R NrmRing J = MetOpen dist R X × X
92 91 oveq1d R NrmRing J 𝑡 U = MetOpen dist R X × X 𝑡 U
93 79 eqcomi dist R U × U = dist R X × X U × U
94 eqid MetOpen dist R X × X = MetOpen dist R X × X
95 93 94 86 metrest dist R X × X ∞Met X U X MetOpen dist R X × X 𝑡 U = MetOpen dist R U × U
96 82 15 95 sylancl R NrmRing MetOpen dist R X × X 𝑡 U = MetOpen dist R U × U
97 92 96 eqtrd R NrmRing J 𝑡 U = MetOpen dist R U × U
98 97 97 oveq12d R NrmRing J 𝑡 U Cn J 𝑡 U = MetOpen dist R U × U Cn MetOpen dist R U × U
99 89 98 eleqtrrd R NrmRing I J 𝑡 U Cn J 𝑡 U