Step |
Hyp |
Ref |
Expression |
1 |
|
nrginvrcn.x |
|
2 |
|
nrginvrcn.u |
|
3 |
|
nrginvrcn.i |
|
4 |
|
nrginvrcn.n |
|
5 |
|
nrginvrcn.d |
|
6 |
|
nrginvrcn.r |
|
7 |
|
nrginvrcn.z |
|
8 |
|
nrginvrcn.a |
|
9 |
|
nrginvrcn.b |
|
10 |
|
nrginvrcn.t |
|
11 |
|
1rp |
|
12 |
|
nrgngp |
|
13 |
6 12
|
syl |
|
14 |
1 2
|
unitss |
|
15 |
14 8
|
sselid |
|
16 |
|
eqid |
|
17 |
2 16
|
nzrunit |
|
18 |
7 8 17
|
syl2anc |
|
19 |
1 4 16
|
nmrpcl |
|
20 |
13 15 18 19
|
syl3anc |
|
21 |
20 9
|
rpmulcld |
|
22 |
|
ifcl |
|
23 |
11 21 22
|
sylancr |
|
24 |
20
|
rphalfcld |
|
25 |
23 24
|
rpmulcld |
|
26 |
10 25
|
eqeltrid |
|
27 |
13
|
adantr |
|
28 |
8
|
adantr |
|
29 |
1 2
|
unitcl |
|
30 |
28 29
|
syl |
|
31 |
1 4
|
nmcl |
|
32 |
27 30 31
|
syl2anc |
|
33 |
32
|
recnd |
|
34 |
|
simprl |
|
35 |
14 34
|
sselid |
|
36 |
1 4
|
nmcl |
|
37 |
27 35 36
|
syl2anc |
|
38 |
37
|
recnd |
|
39 |
|
ngpgrp |
|
40 |
27 39
|
syl |
|
41 |
|
nrgring |
|
42 |
6 41
|
syl |
|
43 |
42
|
adantr |
|
44 |
2 3 1
|
ringinvcl |
|
45 |
43 28 44
|
syl2anc |
|
46 |
2 3 1
|
ringinvcl |
|
47 |
43 34 46
|
syl2anc |
|
48 |
|
eqid |
|
49 |
1 48
|
grpsubcl |
|
50 |
40 45 47 49
|
syl3anc |
|
51 |
1 4
|
nmcl |
|
52 |
27 50 51
|
syl2anc |
|
53 |
52
|
recnd |
|
54 |
33 38 53
|
mul32d |
|
55 |
6
|
adantr |
|
56 |
|
eqid |
|
57 |
1 4 56
|
nmmul |
|
58 |
55 30 50 57
|
syl3anc |
|
59 |
1 56 48 43 30 45 47
|
ringsubdi |
|
60 |
|
eqid |
|
61 |
2 3 56 60
|
unitrinv |
|
62 |
43 28 61
|
syl2anc |
|
63 |
62
|
oveq1d |
|
64 |
59 63
|
eqtrd |
|
65 |
64
|
fveq2d |
|
66 |
58 65
|
eqtr3d |
|
67 |
66
|
oveq1d |
|
68 |
1 60
|
ringidcl |
|
69 |
43 68
|
syl |
|
70 |
1 56
|
ringcl |
|
71 |
43 30 47 70
|
syl3anc |
|
72 |
1 48
|
grpsubcl |
|
73 |
40 69 71 72
|
syl3anc |
|
74 |
1 4 56
|
nmmul |
|
75 |
55 73 35 74
|
syl3anc |
|
76 |
1 56 48 43 69 71 35
|
rngsubdir |
|
77 |
1 56 60
|
ringlidm |
|
78 |
43 35 77
|
syl2anc |
|
79 |
1 56
|
ringass |
|
80 |
43 30 47 35 79
|
syl13anc |
|
81 |
2 3 56 60
|
unitlinv |
|
82 |
43 34 81
|
syl2anc |
|
83 |
82
|
oveq2d |
|
84 |
1 56 60
|
ringridm |
|
85 |
43 30 84
|
syl2anc |
|
86 |
80 83 85
|
3eqtrd |
|
87 |
78 86
|
oveq12d |
|
88 |
76 87
|
eqtrd |
|
89 |
88
|
fveq2d |
|
90 |
75 89
|
eqtr3d |
|
91 |
54 67 90
|
3eqtrd |
|
92 |
1 48
|
grpsubcl |
|
93 |
40 35 30 92
|
syl3anc |
|
94 |
1 4
|
nmcl |
|
95 |
27 93 94
|
syl2anc |
|
96 |
95
|
recnd |
|
97 |
20
|
adantr |
|
98 |
7
|
adantr |
|
99 |
2 16
|
nzrunit |
|
100 |
98 34 99
|
syl2anc |
|
101 |
1 4 16
|
nmrpcl |
|
102 |
27 35 100 101
|
syl3anc |
|
103 |
97 102
|
rpmulcld |
|
104 |
103
|
rpred |
|
105 |
104
|
recnd |
|
106 |
103
|
rpne0d |
|
107 |
96 105 53 106
|
divmuld |
|
108 |
91 107
|
mpbird |
|
109 |
4 1 48 5
|
ngpdsr |
|
110 |
27 30 35 109
|
syl3anc |
|
111 |
110
|
oveq1d |
|
112 |
4 1 48 5
|
ngpds |
|
113 |
27 45 47 112
|
syl3anc |
|
114 |
108 111 113
|
3eqtr4rd |
|
115 |
110 95
|
eqeltrd |
|
116 |
26
|
adantr |
|
117 |
116
|
rpred |
|
118 |
9
|
adantr |
|
119 |
118
|
rpred |
|
120 |
104 119
|
remulcld |
|
121 |
|
simprr |
|
122 |
21
|
adantr |
|
123 |
97
|
rphalfcld |
|
124 |
122 123
|
rpmulcld |
|
125 |
124
|
rpred |
|
126 |
|
1re |
|
127 |
122
|
rpred |
|
128 |
|
min2 |
|
129 |
126 127 128
|
sylancr |
|
130 |
23
|
adantr |
|
131 |
130
|
rpred |
|
132 |
131 127 123
|
lemul1d |
|
133 |
129 132
|
mpbid |
|
134 |
10 133
|
eqbrtrid |
|
135 |
123
|
rpred |
|
136 |
33
|
2halvesd |
|
137 |
32 37
|
resubcld |
|
138 |
1 4 48
|
nm2dif |
|
139 |
27 30 35 138
|
syl3anc |
|
140 |
4 1 48 5
|
ngpds |
|
141 |
27 30 35 140
|
syl3anc |
|
142 |
139 141
|
breqtrrd |
|
143 |
|
min1 |
|
144 |
126 127 143
|
sylancr |
|
145 |
|
1red |
|
146 |
131 145 123
|
lemul1d |
|
147 |
144 146
|
mpbid |
|
148 |
10 147
|
eqbrtrid |
|
149 |
135
|
recnd |
|
150 |
149
|
mulid2d |
|
151 |
148 150
|
breqtrd |
|
152 |
115 117 135 121 151
|
ltletrd |
|
153 |
137 115 135 142 152
|
lelttrd |
|
154 |
32 37 135
|
ltsubadd2d |
|
155 |
153 154
|
mpbid |
|
156 |
136 155
|
eqbrtrd |
|
157 |
135 37 135
|
ltadd1d |
|
158 |
156 157
|
mpbird |
|
159 |
135 37 122 158
|
ltmul2dd |
|
160 |
119
|
recnd |
|
161 |
33 38 160
|
mul32d |
|
162 |
159 161
|
breqtrrd |
|
163 |
117 125 120 134 162
|
lelttrd |
|
164 |
115 117 120 121 163
|
lttrd |
|
165 |
115 119 103
|
ltdivmuld |
|
166 |
164 165
|
mpbird |
|
167 |
114 166
|
eqbrtrd |
|
168 |
167
|
expr |
|
169 |
168
|
ralrimiva |
|
170 |
|
breq2 |
|
171 |
170
|
rspceaimv |
|
172 |
26 169 171
|
syl2anc |
|