Metamath Proof Explorer


Theorem nrgngp

Description: A normed ring is a normed group. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Assertion nrgngp R NrmRing R NrmGrp

Proof

Step Hyp Ref Expression
1 eqid norm R = norm R
2 eqid AbsVal R = AbsVal R
3 1 2 isnrg R NrmRing R NrmGrp norm R AbsVal R
4 3 simplbi R NrmRing R NrmGrp