Database
BASIC TOPOLOGY
Metric spaces
Normed algebraic structures
nrgngp
Next ⟩
nrgring
Metamath Proof Explorer
Ascii
Unicode
Theorem
nrgngp
Description:
A normed ring is a normed group.
(Contributed by
Mario Carneiro
, 4-Oct-2015)
Ref
Expression
Assertion
nrgngp
⊢
R
∈
NrmRing
→
R
∈
NrmGrp
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢
norm
⁡
R
=
norm
⁡
R
2
eqid
⊢
AbsVal
⁡
R
=
AbsVal
⁡
R
3
1
2
isnrg
⊢
R
∈
NrmRing
↔
R
∈
NrmGrp
∧
norm
⁡
R
∈
AbsVal
⁡
R
4
3
simplbi
⊢
R
∈
NrmRing
→
R
∈
NrmGrp