Metamath Proof Explorer


Theorem nrgring

Description: A normed ring is a ring. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Assertion nrgring R NrmRing R Ring

Proof

Step Hyp Ref Expression
1 eqid norm R = norm R
2 eqid AbsVal R = AbsVal R
3 1 2 nrgabv R NrmRing norm R AbsVal R
4 2 abvrcl norm R AbsVal R R Ring
5 3 4 syl R NrmRing R Ring