Metamath Proof Explorer


Theorem nrgtgp

Description: A normed ring is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Assertion nrgtgp RNrmRingRTopGrp

Proof

Step Hyp Ref Expression
1 nrgngp RNrmRingRNrmGrp
2 nrgring RNrmRingRRing
3 ringabl RRingRAbel
4 2 3 syl RNrmRingRAbel
5 ngptgp RNrmGrpRAbelRTopGrp
6 1 4 5 syl2anc RNrmRingRTopGrp