Metamath Proof Explorer


Theorem nrmmetd

Description: Show that a group norm generates a metric. Part of Definition 2.2-1 of Kreyszig p. 58. (Contributed by NM, 4-Dec-2006) (Revised by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses nrmmetd.x X = Base G
nrmmetd.m - ˙ = - G
nrmmetd.z 0 ˙ = 0 G
nrmmetd.g φ G Grp
nrmmetd.f φ F : X
nrmmetd.1 φ x X F x = 0 x = 0 ˙
nrmmetd.2 φ x X y X F x - ˙ y F x + F y
Assertion nrmmetd φ F - ˙ Met X

Proof

Step Hyp Ref Expression
1 nrmmetd.x X = Base G
2 nrmmetd.m - ˙ = - G
3 nrmmetd.z 0 ˙ = 0 G
4 nrmmetd.g φ G Grp
5 nrmmetd.f φ F : X
6 nrmmetd.1 φ x X F x = 0 x = 0 ˙
7 nrmmetd.2 φ x X y X F x - ˙ y F x + F y
8 1 2 grpsubf G Grp - ˙ : X × X X
9 4 8 syl φ - ˙ : X × X X
10 fco F : X - ˙ : X × X X F - ˙ : X × X
11 5 9 10 syl2anc φ F - ˙ : X × X
12 opelxpi a X b X a b X × X
13 fvco3 - ˙ : X × X X a b X × X F - ˙ a b = F - ˙ a b
14 9 12 13 syl2an φ a X b X F - ˙ a b = F - ˙ a b
15 df-ov a F - ˙ b = F - ˙ a b
16 df-ov a - ˙ b = - ˙ a b
17 16 fveq2i F a - ˙ b = F - ˙ a b
18 14 15 17 3eqtr4g φ a X b X a F - ˙ b = F a - ˙ b
19 18 eqeq1d φ a X b X a F - ˙ b = 0 F a - ˙ b = 0
20 6 ralrimiva φ x X F x = 0 x = 0 ˙
21 1 2 grpsubcl G Grp a X b X a - ˙ b X
22 21 3expb G Grp a X b X a - ˙ b X
23 4 22 sylan φ a X b X a - ˙ b X
24 fveq2 x = a - ˙ b F x = F a - ˙ b
25 24 eqeq1d x = a - ˙ b F x = 0 F a - ˙ b = 0
26 eqeq1 x = a - ˙ b x = 0 ˙ a - ˙ b = 0 ˙
27 25 26 bibi12d x = a - ˙ b F x = 0 x = 0 ˙ F a - ˙ b = 0 a - ˙ b = 0 ˙
28 27 rspccva x X F x = 0 x = 0 ˙ a - ˙ b X F a - ˙ b = 0 a - ˙ b = 0 ˙
29 20 23 28 syl2an2r φ a X b X F a - ˙ b = 0 a - ˙ b = 0 ˙
30 1 3 2 grpsubeq0 G Grp a X b X a - ˙ b = 0 ˙ a = b
31 30 3expb G Grp a X b X a - ˙ b = 0 ˙ a = b
32 4 31 sylan φ a X b X a - ˙ b = 0 ˙ a = b
33 19 29 32 3bitrd φ a X b X a F - ˙ b = 0 a = b
34 5 adantr φ a X b X c X F : X
35 23 adantrr φ a X b X c X a - ˙ b X
36 34 35 ffvelrnd φ a X b X c X F a - ˙ b
37 4 adantr φ a X b X c X G Grp
38 simprll φ a X b X c X a X
39 simprr φ a X b X c X c X
40 1 2 grpsubcl G Grp a X c X a - ˙ c X
41 37 38 39 40 syl3anc φ a X b X c X a - ˙ c X
42 34 41 ffvelrnd φ a X b X c X F a - ˙ c
43 simprlr φ a X b X c X b X
44 1 2 grpsubcl G Grp b X c X b - ˙ c X
45 37 43 39 44 syl3anc φ a X b X c X b - ˙ c X
46 34 45 ffvelrnd φ a X b X c X F b - ˙ c
47 42 46 readdcld φ a X b X c X F a - ˙ c + F b - ˙ c
48 1 2 grpsubcl G Grp c X a X c - ˙ a X
49 37 39 38 48 syl3anc φ a X b X c X c - ˙ a X
50 34 49 ffvelrnd φ a X b X c X F c - ˙ a
51 1 2 grpsubcl G Grp c X b X c - ˙ b X
52 37 39 43 51 syl3anc φ a X b X c X c - ˙ b X
53 34 52 ffvelrnd φ a X b X c X F c - ˙ b
54 50 53 readdcld φ a X b X c X F c - ˙ a + F c - ˙ b
55 1 2 grpnnncan2 G Grp a X b X c X a - ˙ c - ˙ b - ˙ c = a - ˙ b
56 37 38 43 39 55 syl13anc φ a X b X c X a - ˙ c - ˙ b - ˙ c = a - ˙ b
57 56 fveq2d φ a X b X c X F a - ˙ c - ˙ b - ˙ c = F a - ˙ b
58 7 ralrimivva φ x X y X F x - ˙ y F x + F y
59 58 adantr φ a X b X c X x X y X F x - ˙ y F x + F y
60 fvoveq1 x = a - ˙ c F x - ˙ y = F a - ˙ c - ˙ y
61 fveq2 x = a - ˙ c F x = F a - ˙ c
62 61 oveq1d x = a - ˙ c F x + F y = F a - ˙ c + F y
63 60 62 breq12d x = a - ˙ c F x - ˙ y F x + F y F a - ˙ c - ˙ y F a - ˙ c + F y
64 oveq2 y = b - ˙ c a - ˙ c - ˙ y = a - ˙ c - ˙ b - ˙ c
65 64 fveq2d y = b - ˙ c F a - ˙ c - ˙ y = F a - ˙ c - ˙ b - ˙ c
66 fveq2 y = b - ˙ c F y = F b - ˙ c
67 66 oveq2d y = b - ˙ c F a - ˙ c + F y = F a - ˙ c + F b - ˙ c
68 65 67 breq12d y = b - ˙ c F a - ˙ c - ˙ y F a - ˙ c + F y F a - ˙ c - ˙ b - ˙ c F a - ˙ c + F b - ˙ c
69 63 68 rspc2va a - ˙ c X b - ˙ c X x X y X F x - ˙ y F x + F y F a - ˙ c - ˙ b - ˙ c F a - ˙ c + F b - ˙ c
70 41 45 59 69 syl21anc φ a X b X c X F a - ˙ c - ˙ b - ˙ c F a - ˙ c + F b - ˙ c
71 57 70 eqbrtrrd φ a X b X c X F a - ˙ b F a - ˙ c + F b - ˙ c
72 eleq1w b = c b X c X
73 72 anbi2d b = c a X b X a X c X
74 73 anbi2d b = c φ a X b X φ a X c X
75 oveq2 b = c a - ˙ b = a - ˙ c
76 75 fveq2d b = c F a - ˙ b = F a - ˙ c
77 fvoveq1 b = c F b - ˙ a = F c - ˙ a
78 76 77 breq12d b = c F a - ˙ b F b - ˙ a F a - ˙ c F c - ˙ a
79 74 78 imbi12d b = c φ a X b X F a - ˙ b F b - ˙ a φ a X c X F a - ˙ c F c - ˙ a
80 4 adantr φ a X b X G Grp
81 1 3 grpidcl G Grp 0 ˙ X
82 80 81 syl φ a X b X 0 ˙ X
83 simprr φ a X b X b X
84 simprl φ a X b X a X
85 1 2 grpsubcl G Grp b X a X b - ˙ a X
86 80 83 84 85 syl3anc φ a X b X b - ˙ a X
87 58 adantr φ a X b X x X y X F x - ˙ y F x + F y
88 fvoveq1 x = 0 ˙ F x - ˙ y = F 0 ˙ - ˙ y
89 fveq2 x = 0 ˙ F x = F 0 ˙
90 89 oveq1d x = 0 ˙ F x + F y = F 0 ˙ + F y
91 88 90 breq12d x = 0 ˙ F x - ˙ y F x + F y F 0 ˙ - ˙ y F 0 ˙ + F y
92 oveq2 y = b - ˙ a 0 ˙ - ˙ y = 0 ˙ - ˙ b - ˙ a
93 92 fveq2d y = b - ˙ a F 0 ˙ - ˙ y = F 0 ˙ - ˙ b - ˙ a
94 fveq2 y = b - ˙ a F y = F b - ˙ a
95 94 oveq2d y = b - ˙ a F 0 ˙ + F y = F 0 ˙ + F b - ˙ a
96 93 95 breq12d y = b - ˙ a F 0 ˙ - ˙ y F 0 ˙ + F y F 0 ˙ - ˙ b - ˙ a F 0 ˙ + F b - ˙ a
97 91 96 rspc2va 0 ˙ X b - ˙ a X x X y X F x - ˙ y F x + F y F 0 ˙ - ˙ b - ˙ a F 0 ˙ + F b - ˙ a
98 82 86 87 97 syl21anc φ a X b X F 0 ˙ - ˙ b - ˙ a F 0 ˙ + F b - ˙ a
99 eqid inv g G = inv g G
100 1 2 99 3 grpinvval2 G Grp b - ˙ a X inv g G b - ˙ a = 0 ˙ - ˙ b - ˙ a
101 4 86 100 syl2an2r φ a X b X inv g G b - ˙ a = 0 ˙ - ˙ b - ˙ a
102 1 2 99 grpinvsub G Grp b X a X inv g G b - ˙ a = a - ˙ b
103 80 83 84 102 syl3anc φ a X b X inv g G b - ˙ a = a - ˙ b
104 101 103 eqtr3d φ a X b X 0 ˙ - ˙ b - ˙ a = a - ˙ b
105 104 fveq2d φ a X b X F 0 ˙ - ˙ b - ˙ a = F a - ˙ b
106 4 81 syl φ 0 ˙ X
107 pm5.501 x = 0 ˙ F x = 0 x = 0 ˙ F x = 0
108 bicom x = 0 ˙ F x = 0 F x = 0 x = 0 ˙
109 107 108 bitrdi x = 0 ˙ F x = 0 F x = 0 x = 0 ˙
110 89 eqeq1d x = 0 ˙ F x = 0 F 0 ˙ = 0
111 109 110 bitr3d x = 0 ˙ F x = 0 x = 0 ˙ F 0 ˙ = 0
112 111 rspccva x X F x = 0 x = 0 ˙ 0 ˙ X F 0 ˙ = 0
113 20 106 112 syl2anc φ F 0 ˙ = 0
114 113 adantr φ a X b X F 0 ˙ = 0
115 114 oveq1d φ a X b X F 0 ˙ + F b - ˙ a = 0 + F b - ˙ a
116 5 adantr φ a X b X F : X
117 116 86 ffvelrnd φ a X b X F b - ˙ a
118 117 recnd φ a X b X F b - ˙ a
119 118 addid2d φ a X b X 0 + F b - ˙ a = F b - ˙ a
120 115 119 eqtrd φ a X b X F 0 ˙ + F b - ˙ a = F b - ˙ a
121 98 105 120 3brtr3d φ a X b X F a - ˙ b F b - ˙ a
122 79 121 chvarvv φ a X c X F a - ˙ c F c - ˙ a
123 122 adantrlr φ a X b X c X F a - ˙ c F c - ˙ a
124 eleq1w a = b a X b X
125 124 anbi1d a = b a X c X b X c X
126 125 anbi2d a = b φ a X c X φ b X c X
127 fvoveq1 a = b F a - ˙ c = F b - ˙ c
128 oveq2 a = b c - ˙ a = c - ˙ b
129 128 fveq2d a = b F c - ˙ a = F c - ˙ b
130 127 129 breq12d a = b F a - ˙ c F c - ˙ a F b - ˙ c F c - ˙ b
131 126 130 imbi12d a = b φ a X c X F a - ˙ c F c - ˙ a φ b X c X F b - ˙ c F c - ˙ b
132 131 122 chvarvv φ b X c X F b - ˙ c F c - ˙ b
133 132 adantrll φ a X b X c X F b - ˙ c F c - ˙ b
134 42 46 50 53 123 133 le2addd φ a X b X c X F a - ˙ c + F b - ˙ c F c - ˙ a + F c - ˙ b
135 36 47 54 71 134 letrd φ a X b X c X F a - ˙ b F c - ˙ a + F c - ˙ b
136 18 adantrr φ a X b X c X a F - ˙ b = F a - ˙ b
137 opelxpi c X a X c a X × X
138 39 38 137 syl2anc φ a X b X c X c a X × X
139 fvco3 - ˙ : X × X X c a X × X F - ˙ c a = F - ˙ c a
140 9 138 139 syl2an2r φ a X b X c X F - ˙ c a = F - ˙ c a
141 df-ov c F - ˙ a = F - ˙ c a
142 df-ov c - ˙ a = - ˙ c a
143 142 fveq2i F c - ˙ a = F - ˙ c a
144 140 141 143 3eqtr4g φ a X b X c X c F - ˙ a = F c - ˙ a
145 opelxpi c X b X c b X × X
146 39 43 145 syl2anc φ a X b X c X c b X × X
147 fvco3 - ˙ : X × X X c b X × X F - ˙ c b = F - ˙ c b
148 9 146 147 syl2an2r φ a X b X c X F - ˙ c b = F - ˙ c b
149 df-ov c F - ˙ b = F - ˙ c b
150 df-ov c - ˙ b = - ˙ c b
151 150 fveq2i F c - ˙ b = F - ˙ c b
152 148 149 151 3eqtr4g φ a X b X c X c F - ˙ b = F c - ˙ b
153 144 152 oveq12d φ a X b X c X c F - ˙ a + c F - ˙ b = F c - ˙ a + F c - ˙ b
154 135 136 153 3brtr4d φ a X b X c X a F - ˙ b c F - ˙ a + c F - ˙ b
155 154 expr φ a X b X c X a F - ˙ b c F - ˙ a + c F - ˙ b
156 155 ralrimiv φ a X b X c X a F - ˙ b c F - ˙ a + c F - ˙ b
157 33 156 jca φ a X b X a F - ˙ b = 0 a = b c X a F - ˙ b c F - ˙ a + c F - ˙ b
158 157 ralrimivva φ a X b X a F - ˙ b = 0 a = b c X a F - ˙ b c F - ˙ a + c F - ˙ b
159 1 fvexi X V
160 ismet X V F - ˙ Met X F - ˙ : X × X a X b X a F - ˙ b = 0 a = b c X a F - ˙ b c F - ˙ a + c F - ˙ b
161 159 160 ax-mp F - ˙ Met X F - ˙ : X × X a X b X a F - ˙ b = 0 a = b c X a F - ˙ b c F - ˙ a + c F - ˙ b
162 11 158 161 sylanbrc φ F - ˙ Met X