Metamath Proof Explorer


Theorem nrmsep3

Description: In a normal space, given a closed set B inside an open set A , there is an open set x such that B C_ x C_ cls ( x ) C_ A . (Contributed by Mario Carneiro, 24-Aug-2015)

Ref Expression
Assertion nrmsep3 J Nrm A J B Clsd J B A x J B x cls J x A

Proof

Step Hyp Ref Expression
1 isnrm J Nrm J Top y J z Clsd J 𝒫 y x J z x cls J x y
2 pweq y = A 𝒫 y = 𝒫 A
3 2 ineq2d y = A Clsd J 𝒫 y = Clsd J 𝒫 A
4 sseq2 y = A cls J x y cls J x A
5 4 anbi2d y = A z x cls J x y z x cls J x A
6 5 rexbidv y = A x J z x cls J x y x J z x cls J x A
7 3 6 raleqbidv y = A z Clsd J 𝒫 y x J z x cls J x y z Clsd J 𝒫 A x J z x cls J x A
8 7 rspccv y J z Clsd J 𝒫 y x J z x cls J x y A J z Clsd J 𝒫 A x J z x cls J x A
9 1 8 simplbiim J Nrm A J z Clsd J 𝒫 A x J z x cls J x A
10 elin B Clsd J 𝒫 A B Clsd J B 𝒫 A
11 elpwg B Clsd J B 𝒫 A B A
12 11 pm5.32i B Clsd J B 𝒫 A B Clsd J B A
13 10 12 bitri B Clsd J 𝒫 A B Clsd J B A
14 cleq1lem z = B z x cls J x A B x cls J x A
15 14 rexbidv z = B x J z x cls J x A x J B x cls J x A
16 15 rspccv z Clsd J 𝒫 A x J z x cls J x A B Clsd J 𝒫 A x J B x cls J x A
17 13 16 syl5bir z Clsd J 𝒫 A x J z x cls J x A B Clsd J B A x J B x cls J x A
18 9 17 syl6 J Nrm A J B Clsd J B A x J B x cls J x A
19 18 exp4a J Nrm A J B Clsd J B A x J B x cls J x A
20 19 3imp2 J Nrm A J B Clsd J B A x J B x cls J x A