Database
BASIC TOPOLOGY
Topology
Separated spaces: T0, T1, T2 (Hausdorff) ...
nrmtop
Next ⟩
cnrmtop
Metamath Proof Explorer
Ascii
Unicode
Theorem
nrmtop
Description:
A normal space is a topological space.
(Contributed by
Jeff Hankins
, 1-Feb-2010)
Ref
Expression
Assertion
nrmtop
⊢
J
∈
Nrm
→
J
∈
Top
Proof
Step
Hyp
Ref
Expression
1
isnrm
⊢
J
∈
Nrm
↔
J
∈
Top
∧
∀
x
∈
J
∀
y
∈
Clsd
⁡
J
∩
𝒫
x
∃
z
∈
J
y
⊆
z
∧
cls
⁡
J
⁡
z
⊆
x
2
1
simplbi
⊢
J
∈
Nrm
→
J
∈
Top