Database
BASIC ALGEBRAIC STRUCTURES
Groups
Subgroups and Quotient groups
nsgsubg
Next ⟩
nsgconj
Metamath Proof Explorer
Ascii
Unicode
Theorem
nsgsubg
Description:
A normal subgroup is a subgroup.
(Contributed by
Mario Carneiro
, 18-Jan-2015)
Ref
Expression
Assertion
nsgsubg
⊢
S
∈
NrmSGrp
⁡
G
→
S
∈
SubGrp
⁡
G
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢
Base
G
=
Base
G
2
eqid
⊢
+
G
=
+
G
3
1
2
isnsg
⊢
S
∈
NrmSGrp
⁡
G
↔
S
∈
SubGrp
⁡
G
∧
∀
x
∈
Base
G
∀
y
∈
Base
G
x
+
G
y
∈
S
↔
y
+
G
x
∈
S
4
3
simplbi
⊢
S
∈
NrmSGrp
⁡
G
→
S
∈
SubGrp
⁡
G