Metamath Proof Explorer


Theorem nsgsubg

Description: A normal subgroup is a subgroup. (Contributed by Mario Carneiro, 18-Jan-2015)

Ref Expression
Assertion nsgsubg S NrmSGrp G S SubGrp G

Proof

Step Hyp Ref Expression
1 eqid Base G = Base G
2 eqid + G = + G
3 1 2 isnsg S NrmSGrp G S SubGrp G x Base G y Base G x + G y S y + G x S
4 3 simplbi S NrmSGrp G S SubGrp G