Metamath Proof Explorer


Theorem nsmndex1

Description: The base set B of the constructed monoid S is not a submonoid of the monoid M of endofunctions on set NN0 , although M e. Mnd and S e. Mnd and B C_ ( BaseM ) hold. (Contributed by AV, 17-Feb-2024)

Ref Expression
Hypotheses smndex1ibas.m No typesetting found for |- M = ( EndoFMnd ` NN0 ) with typecode |-
smndex1ibas.n N
smndex1ibas.i I = x 0 x mod N
smndex1ibas.g G = n 0 ..^ N x 0 n
smndex1mgm.b B = I n 0 ..^ N G n
smndex1mgm.s S = M 𝑠 B
Assertion nsmndex1 B SubMnd M

Proof

Step Hyp Ref Expression
1 smndex1ibas.m Could not format M = ( EndoFMnd ` NN0 ) : No typesetting found for |- M = ( EndoFMnd ` NN0 ) with typecode |-
2 smndex1ibas.n N
3 smndex1ibas.i I = x 0 x mod N
4 smndex1ibas.g G = n 0 ..^ N x 0 n
5 smndex1mgm.b B = I n 0 ..^ N G n
6 smndex1mgm.s S = M 𝑠 B
7 1 2 3 4 5 6 smndex1n0mnd 0 M B
8 7 neli ¬ 0 M B
9 8 intnan ¬ B Base M 0 M B
10 9 intnan ¬ M Mnd M 𝑠 B Mnd B Base M 0 M B
11 eqid Base M = Base M
12 eqid 0 M = 0 M
13 11 12 issubmndb B SubMnd M M Mnd M 𝑠 B Mnd B Base M 0 M B
14 10 13 mtbir ¬ B SubMnd M
15 14 nelir B SubMnd M