Metamath Proof Explorer


Theorem nssd

Description: Negation of subclass relationship. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses nssd.1 φ X A
nssd.2 φ ¬ X B
Assertion nssd φ ¬ A B

Proof

Step Hyp Ref Expression
1 nssd.1 φ X A
2 nssd.2 φ ¬ X B
3 1 2 jca φ X A ¬ X B
4 eleq1 x = X x A X A
5 eleq1 x = X x B X B
6 5 notbid x = X ¬ x B ¬ X B
7 4 6 anbi12d x = X x A ¬ x B X A ¬ X B
8 7 spcegv X A X A ¬ X B x x A ¬ x B
9 1 3 8 sylc φ x x A ¬ x B
10 nss ¬ A B x x A ¬ x B
11 9 10 sylibr φ ¬ A B