Metamath Proof Explorer


Theorem nssdmovg

Description: The value of an operation outside its domain. (Contributed by Alexander van der Vekens, 7-Sep-2017)

Ref Expression
Assertion nssdmovg dom F R × S ¬ A R B S A F B =

Proof

Step Hyp Ref Expression
1 df-ov A F B = F A B
2 ssel2 dom F R × S A B dom F A B R × S
3 opelxp A B R × S A R B S
4 2 3 sylib dom F R × S A B dom F A R B S
5 4 stoic1a dom F R × S ¬ A R B S ¬ A B dom F
6 ndmfv ¬ A B dom F F A B =
7 5 6 syl dom F R × S ¬ A R B S F A B =
8 1 7 eqtrid dom F R × S ¬ A R B S A F B =