Metamath Proof Explorer


Theorem nssinpss

Description: Negation of subclass expressed in terms of intersection and proper subclass. (Contributed by NM, 30-Jun-2004) (Proof shortened by Andrew Salmon, 26-Jun-2011)

Ref Expression
Assertion nssinpss ¬ A B A B A

Proof

Step Hyp Ref Expression
1 inss1 A B A
2 1 biantrur A B A A B A A B A
3 df-ss A B A B = A
4 3 necon3bbii ¬ A B A B A
5 df-pss A B A A B A A B A
6 2 4 5 3bitr4i ¬ A B A B A