Metamath Proof Explorer


Theorem nsspssun

Description: Negation of subclass expressed in terms of proper subclass and union. (Contributed by NM, 15-Sep-2004)

Ref Expression
Assertion nsspssun ¬ A B B A B

Proof

Step Hyp Ref Expression
1 ssun2 B A B
2 1 biantrur ¬ A B B B A B ¬ A B B
3 ssid B B
4 3 biantru A B A B B B
5 unss A B B B A B B
6 4 5 bitri A B A B B
7 2 6 xchnxbir ¬ A B B A B ¬ A B B
8 dfpss3 B A B B A B ¬ A B B
9 7 8 bitr4i ¬ A B B A B