Metamath Proof Explorer


Theorem nssrex

Description: Negation of subclass relationship. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Assertion nssrex ¬ A B x A ¬ x B

Proof

Step Hyp Ref Expression
1 nss ¬ A B x x A ¬ x B
2 df-rex x A ¬ x B x x A ¬ x B
3 1 2 bitr4i ¬ A B x A ¬ x B