Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Glauco Siliprandi
Miscellanea
nssrex
Next ⟩
ssinc
Metamath Proof Explorer
Ascii
Unicode
Theorem
nssrex
Description:
Negation of subclass relationship.
(Contributed by
Glauco Siliprandi
, 3-Mar-2021)
Ref
Expression
Assertion
nssrex
⊢
¬
A
⊆
B
↔
∃
x
∈
A
¬
x
∈
B
Proof
Step
Hyp
Ref
Expression
1
nss
⊢
¬
A
⊆
B
↔
∃
x
x
∈
A
∧
¬
x
∈
B
2
df-rex
⊢
∃
x
∈
A
¬
x
∈
B
↔
∃
x
x
∈
A
∧
¬
x
∈
B
3
1
2
bitr4i
⊢
¬
A
⊆
B
↔
∃
x
∈
A
¬
x
∈
B