Metamath Proof Explorer


Theorem nssss

Description: Negation of subclass relationship. Compare nss . (Contributed by NM, 30-Jun-2004) (Proof shortened by Andrew Salmon, 25-Jul-2011)

Ref Expression
Assertion nssss ¬ A B x x A ¬ x B

Proof

Step Hyp Ref Expression
1 exanali x x A ¬ x B ¬ x x A x B
2 ssextss A B x x A x B
3 1 2 xchbinxr x x A ¬ x B ¬ A B
4 3 bicomi ¬ A B x x A ¬ x B