Metamath Proof Explorer


Theorem nsstr

Description: If it's not a subclass, it's not a subclass of a smaller one. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Assertion nsstr ¬ A B C B ¬ A C

Proof

Step Hyp Ref Expression
1 sstr A C C B A B
2 1 ancoms C B A C A B
3 2 adantll ¬ A B C B A C A B
4 simpll ¬ A B C B A C ¬ A B
5 3 4 pm2.65da ¬ A B C B ¬ A C