Metamath Proof Explorer


Theorem nsuceq0

Description: No successor is empty. (Contributed by NM, 3-Apr-1995)

Ref Expression
Assertion nsuceq0 suc A

Proof

Step Hyp Ref Expression
1 noel ¬ A
2 sucidg A V A suc A
3 eleq2 suc A = A suc A A
4 2 3 syl5ibcom A V suc A = A
5 1 4 mtoi A V ¬ suc A =
6 0ex V
7 eleq1 A = A V V
8 6 7 mpbiri A = A V
9 8 con3i ¬ A V ¬ A =
10 sucprc ¬ A V suc A = A
11 10 eqeq1d ¬ A V suc A = A =
12 9 11 mtbird ¬ A V ¬ suc A =
13 5 12 pm2.61i ¬ suc A =
14 13 neir suc A