Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Ordinals
nsuceq0
Next ⟩
eqelsuc
Metamath Proof Explorer
Ascii
Unicode
Theorem
nsuceq0
Description:
No successor is empty.
(Contributed by
NM
, 3-Apr-1995)
Ref
Expression
Assertion
nsuceq0
⊢
suc
⁡
A
≠
∅
Proof
Step
Hyp
Ref
Expression
1
noel
⊢
¬
A
∈
∅
2
sucidg
⊢
A
∈
V
→
A
∈
suc
⁡
A
3
eleq2
⊢
suc
⁡
A
=
∅
→
A
∈
suc
⁡
A
↔
A
∈
∅
4
2
3
syl5ibcom
⊢
A
∈
V
→
suc
⁡
A
=
∅
→
A
∈
∅
5
1
4
mtoi
⊢
A
∈
V
→
¬
suc
⁡
A
=
∅
6
0ex
⊢
∅
∈
V
7
eleq1
⊢
A
=
∅
→
A
∈
V
↔
∅
∈
V
8
6
7
mpbiri
⊢
A
=
∅
→
A
∈
V
9
8
con3i
⊢
¬
A
∈
V
→
¬
A
=
∅
10
sucprc
⊢
¬
A
∈
V
→
suc
⁡
A
=
A
11
10
eqeq1d
⊢
¬
A
∈
V
→
suc
⁡
A
=
∅
↔
A
=
∅
12
9
11
mtbird
⊢
¬
A
∈
V
→
¬
suc
⁡
A
=
∅
13
5
12
pm2.61i
⊢
¬
suc
⁡
A
=
∅
14
13
neir
⊢
suc
⁡
A
≠
∅