Metamath Proof Explorer


Theorem nsyl2

Description: A negated syllogism inference. (Contributed by NM, 26-Jun-1994) (Proof shortened by Wolf Lammen, 14-Nov-2023)

Ref Expression
Hypotheses nsyl2.1 φ ¬ ψ
nsyl2.2 ¬ χ ψ
Assertion nsyl2 φ χ

Proof

Step Hyp Ref Expression
1 nsyl2.1 φ ¬ ψ
2 nsyl2.2 ¬ χ ψ
3 1 2 nsyl3 ¬ χ ¬ φ
4 3 con4i φ χ