Metamath Proof Explorer


Theorem ntrcls0

Description: A subset whose closure has an empty interior also has an empty interior. (Contributed by NM, 4-Oct-2007)

Ref Expression
Hypothesis clscld.1 X = J
Assertion ntrcls0 J Top S X int J cls J S = int J S =

Proof

Step Hyp Ref Expression
1 clscld.1 X = J
2 simpl J Top S X J Top
3 1 clsss3 J Top S X cls J S X
4 1 sscls J Top S X S cls J S
5 1 ntrss J Top cls J S X S cls J S int J S int J cls J S
6 2 3 4 5 syl3anc J Top S X int J S int J cls J S
7 6 3adant3 J Top S X int J cls J S = int J S int J cls J S
8 sseq2 int J cls J S = int J S int J cls J S int J S
9 8 3ad2ant3 J Top S X int J cls J S = int J S int J cls J S int J S
10 7 9 mpbid J Top S X int J cls J S = int J S
11 ss0 int J S int J S =
12 10 11 syl J Top S X int J cls J S = int J S =