Metamath Proof Explorer


Theorem ntrfval

Description: The interior function on the subsets of a topology's base set. (Contributed by NM, 10-Sep-2006) (Revised by Mario Carneiro, 11-Nov-2013)

Ref Expression
Hypothesis cldval.1 X = J
Assertion ntrfval J Top int J = x 𝒫 X J 𝒫 x

Proof

Step Hyp Ref Expression
1 cldval.1 X = J
2 1 topopn J Top X J
3 pwexg X J 𝒫 X V
4 mptexg 𝒫 X V x 𝒫 X J 𝒫 x V
5 2 3 4 3syl J Top x 𝒫 X J 𝒫 x V
6 unieq j = J j = J
7 6 1 eqtr4di j = J j = X
8 7 pweqd j = J 𝒫 j = 𝒫 X
9 ineq1 j = J j 𝒫 x = J 𝒫 x
10 9 unieqd j = J j 𝒫 x = J 𝒫 x
11 8 10 mpteq12dv j = J x 𝒫 j j 𝒫 x = x 𝒫 X J 𝒫 x
12 df-ntr int = j Top x 𝒫 j j 𝒫 x
13 11 12 fvmptg J Top x 𝒫 X J 𝒫 x V int J = x 𝒫 X J 𝒫 x
14 5 13 mpdan J Top int J = x 𝒫 X J 𝒫 x