Metamath Proof Explorer


Theorem ntridm

Description: The interior operation is idempotent. (Contributed by NM, 2-Oct-2007)

Ref Expression
Hypothesis clscld.1 X = J
Assertion ntridm J Top S X int J int J S = int J S

Proof

Step Hyp Ref Expression
1 clscld.1 X = J
2 1 ntropn J Top S X int J S J
3 1 ntrss3 J Top S X int J S X
4 1 isopn3 J Top int J S X int J S J int J int J S = int J S
5 3 4 syldan J Top S X int J S J int J int J S = int J S
6 2 5 mpbid J Top S X int J int J S = int J S