Database
BASIC TOPOLOGY
Topology
Closure and interior
ntridm
Next ⟩
clstop
Metamath Proof Explorer
Ascii
Unicode
Theorem
ntridm
Description:
The interior operation is idempotent.
(Contributed by
NM
, 2-Oct-2007)
Ref
Expression
Hypothesis
clscld.1
⊢
X
=
⋃
J
Assertion
ntridm
⊢
J
∈
Top
∧
S
⊆
X
→
int
⁡
J
⁡
int
⁡
J
⁡
S
=
int
⁡
J
⁡
S
Proof
Step
Hyp
Ref
Expression
1
clscld.1
⊢
X
=
⋃
J
2
1
ntropn
⊢
J
∈
Top
∧
S
⊆
X
→
int
⁡
J
⁡
S
∈
J
3
1
ntrss3
⊢
J
∈
Top
∧
S
⊆
X
→
int
⁡
J
⁡
S
⊆
X
4
1
isopn3
⊢
J
∈
Top
∧
int
⁡
J
⁡
S
⊆
X
→
int
⁡
J
⁡
S
∈
J
↔
int
⁡
J
⁡
int
⁡
J
⁡
S
=
int
⁡
J
⁡
S
5
3
4
syldan
⊢
J
∈
Top
∧
S
⊆
X
→
int
⁡
J
⁡
S
∈
J
↔
int
⁡
J
⁡
int
⁡
J
⁡
S
=
int
⁡
J
⁡
S
6
2
5
mpbid
⊢
J
∈
Top
∧
S
⊆
X
→
int
⁡
J
⁡
int
⁡
J
⁡
S
=
int
⁡
J
⁡
S