Metamath Proof Explorer


Theorem ntrin

Description: A pairwise intersection of interiors is the interior of the intersection. This does not always hold for arbitrary intersections. (Contributed by Jeff Hankins, 31-Aug-2009)

Ref Expression
Hypothesis clscld.1 X = J
Assertion ntrin J Top A X B X int J A B = int J A int J B

Proof

Step Hyp Ref Expression
1 clscld.1 X = J
2 inss1 A B A
3 1 ntrss J Top A X A B A int J A B int J A
4 2 3 mp3an3 J Top A X int J A B int J A
5 4 3adant3 J Top A X B X int J A B int J A
6 inss2 A B B
7 1 ntrss J Top B X A B B int J A B int J B
8 6 7 mp3an3 J Top B X int J A B int J B
9 8 3adant2 J Top A X B X int J A B int J B
10 5 9 ssind J Top A X B X int J A B int J A int J B
11 simp1 J Top A X B X J Top
12 ssinss1 A X A B X
13 12 3ad2ant2 J Top A X B X A B X
14 1 ntropn J Top A X int J A J
15 14 3adant3 J Top A X B X int J A J
16 1 ntropn J Top B X int J B J
17 16 3adant2 J Top A X B X int J B J
18 inopn J Top int J A J int J B J int J A int J B J
19 11 15 17 18 syl3anc J Top A X B X int J A int J B J
20 inss1 int J A int J B int J A
21 1 ntrss2 J Top A X int J A A
22 21 3adant3 J Top A X B X int J A A
23 20 22 sstrid J Top A X B X int J A int J B A
24 inss2 int J A int J B int J B
25 1 ntrss2 J Top B X int J B B
26 25 3adant2 J Top A X B X int J B B
27 24 26 sstrid J Top A X B X int J A int J B B
28 23 27 ssind J Top A X B X int J A int J B A B
29 1 ssntr J Top A B X int J A int J B J int J A int J B A B int J A int J B int J A B
30 11 13 19 28 29 syl22anc J Top A X B X int J A int J B int J A B
31 10 30 eqssd J Top A X B X int J A B = int J A int J B