Metamath Proof Explorer


Theorem ntrl2v2e

Description: A walk which is not a trail: In a graph with two vertices and one edge connecting these two vertices, to go from one vertex to the other and back to the first vertex via the same/only edge is a walk, see wlk2v2e , but not a trail. Notice that G is a simple graph (without loops) only if X =/= Y . (Contributed by Alexander van der Vekens, 22-Oct-2017) (Revised by AV, 8-Jan-2021) (Proof shortened by AV, 30-Oct-2021)

Ref Expression
Hypotheses wlk2v2e.i I = ⟨“ X Y ”⟩
wlk2v2e.f F = ⟨“ 0 0 ”⟩
wlk2v2e.x X V
wlk2v2e.y Y V
wlk2v2e.p P = ⟨“ XYX ”⟩
wlk2v2e.g G = X Y I
Assertion ntrl2v2e ¬ F Trails G P

Proof

Step Hyp Ref Expression
1 wlk2v2e.i I = ⟨“ X Y ”⟩
2 wlk2v2e.f F = ⟨“ 0 0 ”⟩
3 wlk2v2e.x X V
4 wlk2v2e.y Y V
5 wlk2v2e.p P = ⟨“ XYX ”⟩
6 wlk2v2e.g G = X Y I
7 0z 0
8 1z 1
9 7 8 7 3pm3.2i 0 1 0
10 0ne1 0 1
11 s2prop 0 0 ⟨“ 0 0 ”⟩ = 0 0 1 0
12 7 7 11 mp2an ⟨“ 0 0 ”⟩ = 0 0 1 0
13 2 12 eqtri F = 0 0 1 0
14 13 fpropnf1 0 1 0 0 1 Fun F ¬ Fun F -1
15 9 10 14 mp2an Fun F ¬ Fun F -1
16 15 simpri ¬ Fun F -1
17 16 intnan ¬ F Walks G P Fun F -1
18 istrl F Trails G P F Walks G P Fun F -1
19 17 18 mtbir ¬ F Trails G P