Metamath Proof Explorer


Theorem ntropn

Description: The interior of a subset of a topology's underlying set is open. (Contributed by NM, 11-Sep-2006) (Revised by Mario Carneiro, 11-Nov-2013)

Ref Expression
Hypothesis clscld.1 X = J
Assertion ntropn J Top S X int J S J

Proof

Step Hyp Ref Expression
1 clscld.1 X = J
2 1 ntrval J Top S X int J S = J 𝒫 S
3 inss1 J 𝒫 S J
4 uniopn J Top J 𝒫 S J J 𝒫 S J
5 3 4 mpan2 J Top J 𝒫 S J
6 5 adantr J Top S X J 𝒫 S J
7 2 6 eqeltrd J Top S X int J S J