Database
BASIC TOPOLOGY
Topology
Closure and interior
ntrss
Next ⟩
sscls
Metamath Proof Explorer
Ascii
Unicode
Theorem
ntrss
Description:
Subset relationship for interior.
(Contributed by
NM
, 3-Oct-2007)
Ref
Expression
Hypothesis
clscld.1
⊢
X
=
⋃
J
Assertion
ntrss
⊢
J
∈
Top
∧
S
⊆
X
∧
T
⊆
S
→
int
⁡
J
⁡
T
⊆
int
⁡
J
⁡
S
Proof
Step
Hyp
Ref
Expression
1
clscld.1
⊢
X
=
⋃
J
2
sscon
⊢
T
⊆
S
→
X
∖
S
⊆
X
∖
T
3
2
adantl
⊢
S
⊆
X
∧
T
⊆
S
→
X
∖
S
⊆
X
∖
T
4
difss
⊢
X
∖
T
⊆
X
5
3
4
jctil
⊢
S
⊆
X
∧
T
⊆
S
→
X
∖
T
⊆
X
∧
X
∖
S
⊆
X
∖
T
6
1
clsss
⊢
J
∈
Top
∧
X
∖
T
⊆
X
∧
X
∖
S
⊆
X
∖
T
→
cls
⁡
J
⁡
X
∖
S
⊆
cls
⁡
J
⁡
X
∖
T
7
6
3expb
⊢
J
∈
Top
∧
X
∖
T
⊆
X
∧
X
∖
S
⊆
X
∖
T
→
cls
⁡
J
⁡
X
∖
S
⊆
cls
⁡
J
⁡
X
∖
T
8
5
7
sylan2
⊢
J
∈
Top
∧
S
⊆
X
∧
T
⊆
S
→
cls
⁡
J
⁡
X
∖
S
⊆
cls
⁡
J
⁡
X
∖
T
9
8
sscond
⊢
J
∈
Top
∧
S
⊆
X
∧
T
⊆
S
→
X
∖
cls
⁡
J
⁡
X
∖
T
⊆
X
∖
cls
⁡
J
⁡
X
∖
S
10
sstr2
⊢
T
⊆
S
→
S
⊆
X
→
T
⊆
X
11
10
impcom
⊢
S
⊆
X
∧
T
⊆
S
→
T
⊆
X
12
1
ntrval2
⊢
J
∈
Top
∧
T
⊆
X
→
int
⁡
J
⁡
T
=
X
∖
cls
⁡
J
⁡
X
∖
T
13
11
12
sylan2
⊢
J
∈
Top
∧
S
⊆
X
∧
T
⊆
S
→
int
⁡
J
⁡
T
=
X
∖
cls
⁡
J
⁡
X
∖
T
14
1
ntrval2
⊢
J
∈
Top
∧
S
⊆
X
→
int
⁡
J
⁡
S
=
X
∖
cls
⁡
J
⁡
X
∖
S
15
14
adantrr
⊢
J
∈
Top
∧
S
⊆
X
∧
T
⊆
S
→
int
⁡
J
⁡
S
=
X
∖
cls
⁡
J
⁡
X
∖
S
16
9
13
15
3sstr4d
⊢
J
∈
Top
∧
S
⊆
X
∧
T
⊆
S
→
int
⁡
J
⁡
T
⊆
int
⁡
J
⁡
S
17
16
3impb
⊢
J
∈
Top
∧
S
⊆
X
∧
T
⊆
S
→
int
⁡
J
⁡
T
⊆
int
⁡
J
⁡
S