Metamath Proof Explorer


Theorem ntrss

Description: Subset relationship for interior. (Contributed by NM, 3-Oct-2007)

Ref Expression
Hypothesis clscld.1 X = J
Assertion ntrss J Top S X T S int J T int J S

Proof

Step Hyp Ref Expression
1 clscld.1 X = J
2 sscon T S X S X T
3 2 adantl S X T S X S X T
4 difss X T X
5 3 4 jctil S X T S X T X X S X T
6 1 clsss J Top X T X X S X T cls J X S cls J X T
7 6 3expb J Top X T X X S X T cls J X S cls J X T
8 5 7 sylan2 J Top S X T S cls J X S cls J X T
9 8 sscond J Top S X T S X cls J X T X cls J X S
10 sstr2 T S S X T X
11 10 impcom S X T S T X
12 1 ntrval2 J Top T X int J T = X cls J X T
13 11 12 sylan2 J Top S X T S int J T = X cls J X T
14 1 ntrval2 J Top S X int J S = X cls J X S
15 14 adantrr J Top S X T S int J S = X cls J X S
16 9 13 15 3sstr4d J Top S X T S int J T int J S
17 16 3impb J Top S X T S int J T int J S