Metamath Proof Explorer


Theorem ntrtop

Description: The interior of a topology's underlying set is the entire set. (Contributed by NM, 12-Sep-2006)

Ref Expression
Hypothesis clscld.1 X = J
Assertion ntrtop J Top int J X = X

Proof

Step Hyp Ref Expression
1 clscld.1 X = J
2 1 topopn J Top X J
3 ssid X X
4 1 isopn3 J Top X X X J int J X = X
5 3 4 mpan2 J Top X J int J X = X
6 2 5 mpbid J Top int J X = X