Metamath Proof Explorer


Theorem ntrval

Description: The interior of a subset of a topology's base set is the union of all the open sets it includes. Definition of interior of Munkres p. 94. (Contributed by NM, 10-Sep-2006) (Revised by Mario Carneiro, 11-Nov-2013)

Ref Expression
Hypothesis iscld.1 X = J
Assertion ntrval J Top S X int J S = J 𝒫 S

Proof

Step Hyp Ref Expression
1 iscld.1 X = J
2 1 ntrfval J Top int J = x 𝒫 X J 𝒫 x
3 2 fveq1d J Top int J S = x 𝒫 X J 𝒫 x S
4 3 adantr J Top S X int J S = x 𝒫 X J 𝒫 x S
5 eqid x 𝒫 X J 𝒫 x = x 𝒫 X J 𝒫 x
6 pweq x = S 𝒫 x = 𝒫 S
7 6 ineq2d x = S J 𝒫 x = J 𝒫 S
8 7 unieqd x = S J 𝒫 x = J 𝒫 S
9 1 topopn J Top X J
10 elpw2g X J S 𝒫 X S X
11 9 10 syl J Top S 𝒫 X S X
12 11 biimpar J Top S X S 𝒫 X
13 inex1g J Top J 𝒫 S V
14 13 adantr J Top S X J 𝒫 S V
15 14 uniexd J Top S X J 𝒫 S V
16 5 8 12 15 fvmptd3 J Top S X x 𝒫 X J 𝒫 x S = J 𝒫 S
17 4 16 eqtrd J Top S X int J S = J 𝒫 S