Metamath Proof Explorer


Theorem ntrval2

Description: Interior expressed in terms of closure. (Contributed by NM, 1-Oct-2007)

Ref Expression
Hypothesis clscld.1 X = J
Assertion ntrval2 J Top S X int J S = X cls J X S

Proof

Step Hyp Ref Expression
1 clscld.1 X = J
2 difss X S X
3 1 clsval2 J Top X S X cls J X S = X int J X X S
4 2 3 mpan2 J Top cls J X S = X int J X X S
5 4 adantr J Top S X cls J X S = X int J X X S
6 dfss4 S X X X S = S
7 6 biimpi S X X X S = S
8 7 fveq2d S X int J X X S = int J S
9 8 adantl J Top S X int J X X S = int J S
10 9 difeq2d J Top S X X int J X X S = X int J S
11 5 10 eqtrd J Top S X cls J X S = X int J S
12 11 difeq2d J Top S X X cls J X S = X X int J S
13 1 ntropn J Top S X int J S J
14 1 eltopss J Top int J S J int J S X
15 13 14 syldan J Top S X int J S X
16 dfss4 int J S X X X int J S = int J S
17 15 16 sylib J Top S X X X int J S = int J S
18 12 17 eqtr2d J Top S X int J S = X cls J X S