Database
BASIC TOPOLOGY
Topology
Closure and interior
ntrval2
Next ⟩
ntrdif
Metamath Proof Explorer
Ascii
Unicode
Theorem
ntrval2
Description:
Interior expressed in terms of closure.
(Contributed by
NM
, 1-Oct-2007)
Ref
Expression
Hypothesis
clscld.1
⊢
X
=
⋃
J
Assertion
ntrval2
⊢
J
∈
Top
∧
S
⊆
X
→
int
⁡
J
⁡
S
=
X
∖
cls
⁡
J
⁡
X
∖
S
Proof
Step
Hyp
Ref
Expression
1
clscld.1
⊢
X
=
⋃
J
2
difss
⊢
X
∖
S
⊆
X
3
1
clsval2
⊢
J
∈
Top
∧
X
∖
S
⊆
X
→
cls
⁡
J
⁡
X
∖
S
=
X
∖
int
⁡
J
⁡
X
∖
X
∖
S
4
2
3
mpan2
⊢
J
∈
Top
→
cls
⁡
J
⁡
X
∖
S
=
X
∖
int
⁡
J
⁡
X
∖
X
∖
S
5
4
adantr
⊢
J
∈
Top
∧
S
⊆
X
→
cls
⁡
J
⁡
X
∖
S
=
X
∖
int
⁡
J
⁡
X
∖
X
∖
S
6
dfss4
⊢
S
⊆
X
↔
X
∖
X
∖
S
=
S
7
6
biimpi
⊢
S
⊆
X
→
X
∖
X
∖
S
=
S
8
7
fveq2d
⊢
S
⊆
X
→
int
⁡
J
⁡
X
∖
X
∖
S
=
int
⁡
J
⁡
S
9
8
adantl
⊢
J
∈
Top
∧
S
⊆
X
→
int
⁡
J
⁡
X
∖
X
∖
S
=
int
⁡
J
⁡
S
10
9
difeq2d
⊢
J
∈
Top
∧
S
⊆
X
→
X
∖
int
⁡
J
⁡
X
∖
X
∖
S
=
X
∖
int
⁡
J
⁡
S
11
5
10
eqtrd
⊢
J
∈
Top
∧
S
⊆
X
→
cls
⁡
J
⁡
X
∖
S
=
X
∖
int
⁡
J
⁡
S
12
11
difeq2d
⊢
J
∈
Top
∧
S
⊆
X
→
X
∖
cls
⁡
J
⁡
X
∖
S
=
X
∖
X
∖
int
⁡
J
⁡
S
13
1
ntropn
⊢
J
∈
Top
∧
S
⊆
X
→
int
⁡
J
⁡
S
∈
J
14
1
eltopss
⊢
J
∈
Top
∧
int
⁡
J
⁡
S
∈
J
→
int
⁡
J
⁡
S
⊆
X
15
13
14
syldan
⊢
J
∈
Top
∧
S
⊆
X
→
int
⁡
J
⁡
S
⊆
X
16
dfss4
⊢
int
⁡
J
⁡
S
⊆
X
↔
X
∖
X
∖
int
⁡
J
⁡
S
=
int
⁡
J
⁡
S
17
15
16
sylib
⊢
J
∈
Top
∧
S
⊆
X
→
X
∖
X
∖
int
⁡
J
⁡
S
=
int
⁡
J
⁡
S
18
12
17
eqtr2d
⊢
J
∈
Top
∧
S
⊆
X
→
int
⁡
J
⁡
S
=
X
∖
cls
⁡
J
⁡
X
∖
S