Metamath Proof Explorer


Theorem nulmbl

Description: A nullset is measurable. (Contributed by Mario Carneiro, 18-Mar-2014)

Ref Expression
Assertion nulmbl A vol * A = 0 A dom vol

Proof

Step Hyp Ref Expression
1 simpl A vol * A = 0 A
2 elpwi x 𝒫 x
3 inss2 x A A
4 ovolssnul x A A A vol * A = 0 vol * x A = 0
5 3 4 mp3an1 A vol * A = 0 vol * x A = 0
6 5 adantr A vol * A = 0 x vol * x vol * x A = 0
7 6 oveq1d A vol * A = 0 x vol * x vol * x A + vol * x A = 0 + vol * x A
8 difss x A x
9 ovolsscl x A x x vol * x vol * x A
10 8 9 mp3an1 x vol * x vol * x A
11 10 adantl A vol * A = 0 x vol * x vol * x A
12 11 recnd A vol * A = 0 x vol * x vol * x A
13 12 addid2d A vol * A = 0 x vol * x 0 + vol * x A = vol * x A
14 7 13 eqtrd A vol * A = 0 x vol * x vol * x A + vol * x A = vol * x A
15 simprl A vol * A = 0 x vol * x x
16 ovolss x A x x vol * x A vol * x
17 8 15 16 sylancr A vol * A = 0 x vol * x vol * x A vol * x
18 14 17 eqbrtrd A vol * A = 0 x vol * x vol * x A + vol * x A vol * x
19 18 expr A vol * A = 0 x vol * x vol * x A + vol * x A vol * x
20 2 19 sylan2 A vol * A = 0 x 𝒫 vol * x vol * x A + vol * x A vol * x
21 20 ralrimiva A vol * A = 0 x 𝒫 vol * x vol * x A + vol * x A vol * x
22 ismbl2 A dom vol A x 𝒫 vol * x vol * x A + vol * x A vol * x
23 1 21 22 sylanbrc A vol * A = 0 A dom vol