Database
REAL AND COMPLEX NUMBERS
Integer sets
Decimal arithmetic
num0u
Next ⟩
num0h
Metamath Proof Explorer
Ascii
Unicode
Theorem
num0u
Description:
Add a zero in the units place.
(Contributed by
Mario Carneiro
, 18-Feb-2014)
Ref
Expression
Hypotheses
numnncl.1
⊢
T
∈
ℕ
0
numnncl.2
⊢
A
∈
ℕ
0
Assertion
num0u
⊢
T
⁢
A
=
T
⁢
A
+
0
Proof
Step
Hyp
Ref
Expression
1
numnncl.1
⊢
T
∈
ℕ
0
2
numnncl.2
⊢
A
∈
ℕ
0
3
1
2
nn0mulcli
⊢
T
⁢
A
∈
ℕ
0
4
3
nn0cni
⊢
T
⁢
A
∈
ℂ
5
4
addridi
⊢
T
⁢
A
+
0
=
T
⁢
A
6
5
eqcomi
⊢
T
⁢
A
=
T
⁢
A
+
0