Metamath Proof Explorer


Theorem numacn

Description: A well-orderable set has choice sequences of every length. (Contributed by Mario Carneiro, 31-Aug-2015)

Ref Expression
Assertion numacn A V X dom card X AC _ A

Proof

Step Hyp Ref Expression
1 elex A V A V
2 simpll X dom card A V f 𝒫 X A X dom card
3 elmapi f 𝒫 X A f : A 𝒫 X
4 3 adantl X dom card A V f 𝒫 X A f : A 𝒫 X
5 4 frnd X dom card A V f 𝒫 X A ran f 𝒫 X
6 5 difss2d X dom card A V f 𝒫 X A ran f 𝒫 X
7 sspwuni ran f 𝒫 X ran f X
8 6 7 sylib X dom card A V f 𝒫 X A ran f X
9 ssnum X dom card ran f X ran f dom card
10 2 8 9 syl2anc X dom card A V f 𝒫 X A ran f dom card
11 ssdifin0 ran f 𝒫 X ran f =
12 5 11 syl X dom card A V f 𝒫 X A ran f =
13 disjsn ran f = ¬ ran f
14 12 13 sylib X dom card A V f 𝒫 X A ¬ ran f
15 ac5num ran f dom card ¬ ran f h h : ran f ran f y ran f h y y
16 10 14 15 syl2anc X dom card A V f 𝒫 X A h h : ran f ran f y ran f h y y
17 simpllr X dom card A V f 𝒫 X A h : ran f ran f y ran f h y y A V
18 4 ffnd X dom card A V f 𝒫 X A f Fn A
19 fveq2 y = f x h y = h f x
20 id y = f x y = f x
21 19 20 eleq12d y = f x h y y h f x f x
22 21 ralrn f Fn A y ran f h y y x A h f x f x
23 18 22 syl X dom card A V f 𝒫 X A y ran f h y y x A h f x f x
24 23 biimpa X dom card A V f 𝒫 X A y ran f h y y x A h f x f x
25 24 adantrl X dom card A V f 𝒫 X A h : ran f ran f y ran f h y y x A h f x f x
26 acnlem A V x A h f x f x g x A g x f x
27 17 25 26 syl2anc X dom card A V f 𝒫 X A h : ran f ran f y ran f h y y g x A g x f x
28 16 27 exlimddv X dom card A V f 𝒫 X A g x A g x f x
29 28 ralrimiva X dom card A V f 𝒫 X A g x A g x f x
30 isacn X dom card A V X AC _ A f 𝒫 X A g x A g x f x
31 29 30 mpbird X dom card A V X AC _ A
32 31 expcom A V X dom card X AC _ A
33 1 32 syl A V X dom card X AC _ A