Metamath Proof Explorer


Theorem numadd

Description: Add two decimal integers M and N (no carry). (Contributed by Mario Carneiro, 18-Feb-2014)

Ref Expression
Hypotheses numma.1 T 0
numma.2 A 0
numma.3 B 0
numma.4 C 0
numma.5 D 0
numma.6 M = T A + B
numma.7 N = T C + D
numadd.8 A + C = E
numadd.9 B + D = F
Assertion numadd M + N = T E + F

Proof

Step Hyp Ref Expression
1 numma.1 T 0
2 numma.2 A 0
3 numma.3 B 0
4 numma.4 C 0
5 numma.5 D 0
6 numma.6 M = T A + B
7 numma.7 N = T C + D
8 numadd.8 A + C = E
9 numadd.9 B + D = F
10 1 2 3 numcl T A + B 0
11 6 10 eqeltri M 0
12 11 nn0cni M
13 12 mulid1i M 1 = M
14 13 oveq1i M 1 + N = M + N
15 1nn0 1 0
16 2 nn0cni A
17 16 mulid1i A 1 = A
18 17 oveq1i A 1 + C = A + C
19 18 8 eqtri A 1 + C = E
20 3 nn0cni B
21 20 mulid1i B 1 = B
22 21 oveq1i B 1 + D = B + D
23 22 9 eqtri B 1 + D = F
24 1 2 3 4 5 6 7 15 19 23 numma M 1 + N = T E + F
25 14 24 eqtr3i M + N = T E + F