Step |
Hyp |
Ref |
Expression |
1 |
|
numclwlk1.v |
|
2 |
|
numclwlk1.c |
|
3 |
|
numclwlk1.f |
|
4 |
|
rusgrusgr |
|
5 |
|
usgruspgr |
|
6 |
4 5
|
syl |
|
7 |
6
|
ad2antlr |
|
8 |
|
simpl |
|
9 |
8
|
adantl |
|
10 |
|
uzuzle23 |
|
11 |
10
|
ad2antll |
|
12 |
|
eqid |
|
13 |
1 2 12
|
dlwwlknondlwlknonen |
|
14 |
7 9 11 13
|
syl3anc |
|
15 |
4
|
anim2i |
|
16 |
15
|
ancomd |
|
17 |
1
|
isfusgr |
|
18 |
16 17
|
sylibr |
|
19 |
|
eluzge3nn |
|
20 |
19
|
nnnn0d |
|
21 |
20
|
adantl |
|
22 |
|
wlksnfi |
|
23 |
18 21 22
|
syl2an |
|
24 |
|
clwlkswks |
|
25 |
24
|
a1i |
|
26 |
|
simp21 |
|
27 |
25 26
|
rabssrabd |
|
28 |
23 27
|
ssfid |
|
29 |
2 28
|
eqeltrid |
|
30 |
1
|
clwwlknonfin |
|
31 |
30
|
ad2antrr |
|
32 |
|
ssrab2 |
|
33 |
32
|
a1i |
|
34 |
31 33
|
ssfid |
|
35 |
|
hashen |
|
36 |
29 34 35
|
syl2anc |
|
37 |
14 36
|
mpbird |
|
38 |
|
eqidd |
|
39 |
|
oveq12 |
|
40 |
|
fvoveq1 |
|
41 |
40
|
adantl |
|
42 |
|
simpl |
|
43 |
41 42
|
eqeq12d |
|
44 |
39 43
|
rabeqbidv |
|
45 |
44
|
adantl |
|
46 |
|
ovex |
|
47 |
46
|
rabex |
|
48 |
47
|
a1i |
|
49 |
38 45 9 11 48
|
ovmpod |
|
50 |
49
|
fveq2d |
|
51 |
|
eqid |
|
52 |
|
eqid |
|
53 |
1 51 52
|
numclwwlk1 |
|
54 |
8 1
|
eleqtrdi |
|
55 |
54
|
adantl |
|
56 |
|
uz3m2nn |
|
57 |
56
|
ad2antll |
|
58 |
|
clwwlknonclwlknonen |
|
59 |
7 55 57 58
|
syl3anc |
|
60 |
3 59
|
eqbrtrid |
|
61 |
|
uznn0sub |
|
62 |
10 61
|
syl |
|
63 |
62
|
adantl |
|
64 |
|
wlksnfi |
|
65 |
18 63 64
|
syl2an |
|
66 |
|
simp2l |
|
67 |
25 66
|
rabssrabd |
|
68 |
65 67
|
ssfid |
|
69 |
3 68
|
eqeltrid |
|
70 |
1
|
clwwlknonfin |
|
71 |
70
|
ad2antrr |
|
72 |
|
hashen |
|
73 |
69 71 72
|
syl2anc |
|
74 |
60 73
|
mpbird |
|
75 |
74
|
eqcomd |
|
76 |
75
|
oveq2d |
|
77 |
53 76
|
eqtrd |
|
78 |
37 50 77
|
3eqtr2d |
|