| Step |
Hyp |
Ref |
Expression |
| 1 |
|
numclwlk1.v |
|
| 2 |
|
numclwlk1.c |
|
| 3 |
|
numclwlk1.f |
|
| 4 |
|
rusgrusgr |
|
| 5 |
|
usgruspgr |
|
| 6 |
4 5
|
syl |
|
| 7 |
6
|
ad2antlr |
|
| 8 |
|
simpl |
|
| 9 |
8
|
adantl |
|
| 10 |
|
uzuzle23 |
|
| 11 |
10
|
ad2antll |
|
| 12 |
|
eqid |
|
| 13 |
1 2 12
|
dlwwlknondlwlknonen |
|
| 14 |
7 9 11 13
|
syl3anc |
|
| 15 |
4
|
anim2i |
|
| 16 |
15
|
ancomd |
|
| 17 |
1
|
isfusgr |
|
| 18 |
16 17
|
sylibr |
|
| 19 |
|
eluzge3nn |
|
| 20 |
19
|
nnnn0d |
|
| 21 |
20
|
adantl |
|
| 22 |
|
wlksnfi |
|
| 23 |
18 21 22
|
syl2an |
|
| 24 |
|
clwlkswks |
|
| 25 |
24
|
a1i |
|
| 26 |
|
simp21 |
|
| 27 |
25 26
|
rabssrabd |
|
| 28 |
23 27
|
ssfid |
|
| 29 |
2 28
|
eqeltrid |
|
| 30 |
1
|
clwwlknonfin |
|
| 31 |
30
|
ad2antrr |
|
| 32 |
|
ssrab2 |
|
| 33 |
32
|
a1i |
|
| 34 |
31 33
|
ssfid |
|
| 35 |
|
hashen |
|
| 36 |
29 34 35
|
syl2anc |
|
| 37 |
14 36
|
mpbird |
|
| 38 |
|
eqidd |
|
| 39 |
|
oveq12 |
|
| 40 |
|
fvoveq1 |
|
| 41 |
40
|
adantl |
|
| 42 |
|
simpl |
|
| 43 |
41 42
|
eqeq12d |
|
| 44 |
39 43
|
rabeqbidv |
|
| 45 |
44
|
adantl |
|
| 46 |
|
ovex |
|
| 47 |
46
|
rabex |
|
| 48 |
47
|
a1i |
|
| 49 |
38 45 9 11 48
|
ovmpod |
|
| 50 |
49
|
fveq2d |
|
| 51 |
|
eqid |
|
| 52 |
|
eqid |
|
| 53 |
1 51 52
|
numclwwlk1 |
|
| 54 |
8 1
|
eleqtrdi |
|
| 55 |
54
|
adantl |
|
| 56 |
|
uz3m2nn |
|
| 57 |
56
|
ad2antll |
|
| 58 |
|
clwwlknonclwlknonen |
|
| 59 |
7 55 57 58
|
syl3anc |
|
| 60 |
3 59
|
eqbrtrid |
|
| 61 |
|
uznn0sub |
|
| 62 |
10 61
|
syl |
|
| 63 |
62
|
adantl |
|
| 64 |
|
wlksnfi |
|
| 65 |
18 63 64
|
syl2an |
|
| 66 |
|
simp2l |
|
| 67 |
25 66
|
rabssrabd |
|
| 68 |
65 67
|
ssfid |
|
| 69 |
3 68
|
eqeltrid |
|
| 70 |
1
|
clwwlknonfin |
|
| 71 |
70
|
ad2antrr |
|
| 72 |
|
hashen |
|
| 73 |
69 71 72
|
syl2anc |
|
| 74 |
60 73
|
mpbird |
|
| 75 |
74
|
eqcomd |
|
| 76 |
75
|
oveq2d |
|
| 77 |
53 76
|
eqtrd |
|
| 78 |
37 50 77
|
3eqtr2d |
|