Metamath Proof Explorer


Theorem numclwlk1lem2

Description: Lemma 2 for numclwlk1 (Statement 9 in Huneke p. 2 for n>2). This theorem corresponds to numclwwlk1 , using the general definition of walks instead of walks as words. (Contributed by AV, 4-Jun-2022)

Ref Expression
Hypotheses numclwlk1.v V = Vtx G
numclwlk1.c C = w ClWalks G | 1 st w = N 2 nd w 0 = X 2 nd w N 2 = X
numclwlk1.f F = w ClWalks G | 1 st w = N 2 2 nd w 0 = X
Assertion numclwlk1lem2 V Fin G RegUSGraph K X V N 3 C = K F

Proof

Step Hyp Ref Expression
1 numclwlk1.v V = Vtx G
2 numclwlk1.c C = w ClWalks G | 1 st w = N 2 nd w 0 = X 2 nd w N 2 = X
3 numclwlk1.f F = w ClWalks G | 1 st w = N 2 2 nd w 0 = X
4 rusgrusgr G RegUSGraph K G USGraph
5 usgruspgr G USGraph G USHGraph
6 4 5 syl G RegUSGraph K G USHGraph
7 6 ad2antlr V Fin G RegUSGraph K X V N 3 G USHGraph
8 simpl X V N 3 X V
9 8 adantl V Fin G RegUSGraph K X V N 3 X V
10 uzuzle23 N 3 N 2
11 10 ad2antll V Fin G RegUSGraph K X V N 3 N 2
12 eqid w X ClWWalksNOn G N | w N 2 = X = w X ClWWalksNOn G N | w N 2 = X
13 1 2 12 dlwwlknondlwlknonen G USHGraph X V N 2 C w X ClWWalksNOn G N | w N 2 = X
14 7 9 11 13 syl3anc V Fin G RegUSGraph K X V N 3 C w X ClWWalksNOn G N | w N 2 = X
15 4 anim2i V Fin G RegUSGraph K V Fin G USGraph
16 15 ancomd V Fin G RegUSGraph K G USGraph V Fin
17 1 isfusgr G FinUSGraph G USGraph V Fin
18 16 17 sylibr V Fin G RegUSGraph K G FinUSGraph
19 eluzge3nn N 3 N
20 19 nnnn0d N 3 N 0
21 20 adantl X V N 3 N 0
22 wlksnfi G FinUSGraph N 0 w Walks G | 1 st w = N Fin
23 18 21 22 syl2an V Fin G RegUSGraph K X V N 3 w Walks G | 1 st w = N Fin
24 clwlkswks ClWalks G Walks G
25 24 a1i V Fin G RegUSGraph K X V N 3 ClWalks G Walks G
26 simp21 V Fin G RegUSGraph K X V N 3 1 st w = N 2 nd w 0 = X 2 nd w N 2 = X w ClWalks G 1 st w = N
27 25 26 rabssrabd V Fin G RegUSGraph K X V N 3 w ClWalks G | 1 st w = N 2 nd w 0 = X 2 nd w N 2 = X w Walks G | 1 st w = N
28 23 27 ssfid V Fin G RegUSGraph K X V N 3 w ClWalks G | 1 st w = N 2 nd w 0 = X 2 nd w N 2 = X Fin
29 2 28 eqeltrid V Fin G RegUSGraph K X V N 3 C Fin
30 1 clwwlknonfin V Fin X ClWWalksNOn G N Fin
31 30 ad2antrr V Fin G RegUSGraph K X V N 3 X ClWWalksNOn G N Fin
32 ssrab2 w X ClWWalksNOn G N | w N 2 = X X ClWWalksNOn G N
33 32 a1i V Fin G RegUSGraph K X V N 3 w X ClWWalksNOn G N | w N 2 = X X ClWWalksNOn G N
34 31 33 ssfid V Fin G RegUSGraph K X V N 3 w X ClWWalksNOn G N | w N 2 = X Fin
35 hashen C Fin w X ClWWalksNOn G N | w N 2 = X Fin C = w X ClWWalksNOn G N | w N 2 = X C w X ClWWalksNOn G N | w N 2 = X
36 29 34 35 syl2anc V Fin G RegUSGraph K X V N 3 C = w X ClWWalksNOn G N | w N 2 = X C w X ClWWalksNOn G N | w N 2 = X
37 14 36 mpbird V Fin G RegUSGraph K X V N 3 C = w X ClWWalksNOn G N | w N 2 = X
38 eqidd V Fin G RegUSGraph K X V N 3 v V , n 2 w v ClWWalksNOn G n | w n 2 = v = v V , n 2 w v ClWWalksNOn G n | w n 2 = v
39 oveq12 v = X n = N v ClWWalksNOn G n = X ClWWalksNOn G N
40 fvoveq1 n = N w n 2 = w N 2
41 40 adantl v = X n = N w n 2 = w N 2
42 simpl v = X n = N v = X
43 41 42 eqeq12d v = X n = N w n 2 = v w N 2 = X
44 39 43 rabeqbidv v = X n = N w v ClWWalksNOn G n | w n 2 = v = w X ClWWalksNOn G N | w N 2 = X
45 44 adantl V Fin G RegUSGraph K X V N 3 v = X n = N w v ClWWalksNOn G n | w n 2 = v = w X ClWWalksNOn G N | w N 2 = X
46 ovex X ClWWalksNOn G N V
47 46 rabex w X ClWWalksNOn G N | w N 2 = X V
48 47 a1i V Fin G RegUSGraph K X V N 3 w X ClWWalksNOn G N | w N 2 = X V
49 38 45 9 11 48 ovmpod V Fin G RegUSGraph K X V N 3 X v V , n 2 w v ClWWalksNOn G n | w n 2 = v N = w X ClWWalksNOn G N | w N 2 = X
50 49 fveq2d V Fin G RegUSGraph K X V N 3 X v V , n 2 w v ClWWalksNOn G n | w n 2 = v N = w X ClWWalksNOn G N | w N 2 = X
51 eqid v V , n 2 w v ClWWalksNOn G n | w n 2 = v = v V , n 2 w v ClWWalksNOn G n | w n 2 = v
52 eqid X ClWWalksNOn G N 2 = X ClWWalksNOn G N 2
53 1 51 52 numclwwlk1 V Fin G RegUSGraph K X V N 3 X v V , n 2 w v ClWWalksNOn G n | w n 2 = v N = K X ClWWalksNOn G N 2
54 8 1 eleqtrdi X V N 3 X Vtx G
55 54 adantl V Fin G RegUSGraph K X V N 3 X Vtx G
56 uz3m2nn N 3 N 2
57 56 ad2antll V Fin G RegUSGraph K X V N 3 N 2
58 clwwlknonclwlknonen G USHGraph X Vtx G N 2 w ClWalks G | 1 st w = N 2 2 nd w 0 = X X ClWWalksNOn G N 2
59 7 55 57 58 syl3anc V Fin G RegUSGraph K X V N 3 w ClWalks G | 1 st w = N 2 2 nd w 0 = X X ClWWalksNOn G N 2
60 3 59 eqbrtrid V Fin G RegUSGraph K X V N 3 F X ClWWalksNOn G N 2
61 uznn0sub N 2 N 2 0
62 10 61 syl N 3 N 2 0
63 62 adantl X V N 3 N 2 0
64 wlksnfi G FinUSGraph N 2 0 w Walks G | 1 st w = N 2 Fin
65 18 63 64 syl2an V Fin G RegUSGraph K X V N 3 w Walks G | 1 st w = N 2 Fin
66 simp2l V Fin G RegUSGraph K X V N 3 1 st w = N 2 2 nd w 0 = X w ClWalks G 1 st w = N 2
67 25 66 rabssrabd V Fin G RegUSGraph K X V N 3 w ClWalks G | 1 st w = N 2 2 nd w 0 = X w Walks G | 1 st w = N 2
68 65 67 ssfid V Fin G RegUSGraph K X V N 3 w ClWalks G | 1 st w = N 2 2 nd w 0 = X Fin
69 3 68 eqeltrid V Fin G RegUSGraph K X V N 3 F Fin
70 1 clwwlknonfin V Fin X ClWWalksNOn G N 2 Fin
71 70 ad2antrr V Fin G RegUSGraph K X V N 3 X ClWWalksNOn G N 2 Fin
72 hashen F Fin X ClWWalksNOn G N 2 Fin F = X ClWWalksNOn G N 2 F X ClWWalksNOn G N 2
73 69 71 72 syl2anc V Fin G RegUSGraph K X V N 3 F = X ClWWalksNOn G N 2 F X ClWWalksNOn G N 2
74 60 73 mpbird V Fin G RegUSGraph K X V N 3 F = X ClWWalksNOn G N 2
75 74 eqcomd V Fin G RegUSGraph K X V N 3 X ClWWalksNOn G N 2 = F
76 75 oveq2d V Fin G RegUSGraph K X V N 3 K X ClWWalksNOn G N 2 = K F
77 53 76 eqtrd V Fin G RegUSGraph K X V N 3 X v V , n 2 w v ClWWalksNOn G n | w n 2 = v N = K F
78 37 50 77 3eqtr2d V Fin G RegUSGraph K X V N 3 C = K F