Step |
Hyp |
Ref |
Expression |
1 |
|
numclwwlk.v |
|
2 |
|
numclwwlk.q |
|
3 |
|
numclwwlk.h |
|
4 |
|
numclwwlk.r |
|
5 |
|
nnnn0 |
|
6 |
|
2z |
|
7 |
6
|
a1i |
|
8 |
|
nn0pzuz |
|
9 |
5 7 8
|
syl2anc |
|
10 |
9
|
anim2i |
|
11 |
10
|
3adant1 |
|
12 |
3
|
numclwwlkovh |
|
13 |
12
|
eleq2d |
|
14 |
11 13
|
syl |
|
15 |
|
fveq1 |
|
16 |
15
|
eqeq1d |
|
17 |
|
fveq1 |
|
18 |
17 15
|
neeq12d |
|
19 |
16 18
|
anbi12d |
|
20 |
19
|
elrab |
|
21 |
14 20
|
bitrdi |
|
22 |
|
peano2nn |
|
23 |
|
nnz |
|
24 |
23 7
|
zaddcld |
|
25 |
|
uzid |
|
26 |
24 25
|
syl |
|
27 |
|
nncn |
|
28 |
|
1cnd |
|
29 |
27 28 28
|
addassd |
|
30 |
|
1p1e2 |
|
31 |
30
|
a1i |
|
32 |
31
|
oveq2d |
|
33 |
29 32
|
eqtrd |
|
34 |
33
|
fveq2d |
|
35 |
26 34
|
eleqtrrd |
|
36 |
22 35
|
jca |
|
37 |
36
|
3ad2ant3 |
|
38 |
37
|
adantr |
|
39 |
|
simprl |
|
40 |
|
wwlksubclwwlk |
|
41 |
38 39 40
|
sylc |
|
42 |
|
pncan1 |
|
43 |
42
|
eqcomd |
|
44 |
27 43
|
syl |
|
45 |
44
|
oveq1d |
|
46 |
45
|
eleq2d |
|
47 |
46
|
3ad2ant3 |
|
48 |
47
|
adantr |
|
49 |
41 48
|
mpbird |
|
50 |
1
|
clwwlknbp |
|
51 |
|
simprl |
|
52 |
|
simprr |
|
53 |
|
peano2nn0 |
|
54 |
5 53
|
syl |
|
55 |
|
nnre |
|
56 |
55
|
lep1d |
|
57 |
|
elfz2nn0 |
|
58 |
5 54 56 57
|
syl3anbrc |
|
59 |
|
2cnd |
|
60 |
|
addsubass |
|
61 |
|
2m1e1 |
|
62 |
61
|
oveq2i |
|
63 |
60 62
|
eqtrdi |
|
64 |
27 59 28 63
|
syl3anc |
|
65 |
64
|
oveq2d |
|
66 |
58 65
|
eleqtrrd |
|
67 |
|
elfzp1b |
|
68 |
23 24 67
|
syl2anc |
|
69 |
66 68
|
mpbid |
|
70 |
69
|
adantr |
|
71 |
|
oveq2 |
|
72 |
71
|
eleq2d |
|
73 |
72
|
ad2antrl |
|
74 |
70 73
|
mpbird |
|
75 |
|
pfxfv0 |
|
76 |
52 74 75
|
syl2anc |
|
77 |
76
|
ex |
|
78 |
77
|
adantl |
|
79 |
78
|
impcom |
|
80 |
79
|
ad2antrl |
|
81 |
|
simpl |
|
82 |
80 81
|
eqtrd |
|
83 |
|
pfxfvlsw |
|
84 |
52 74 83
|
syl2anc |
|
85 |
27 42
|
syl |
|
86 |
27 59
|
pncand |
|
87 |
85 86
|
eqtr4d |
|
88 |
87
|
fveq2d |
|
89 |
88
|
adantr |
|
90 |
84 89
|
eqtr2d |
|
91 |
90
|
ex |
|
92 |
91
|
adantl |
|
93 |
92
|
impcom |
|
94 |
93
|
neeq1d |
|
95 |
94
|
biimpcd |
|
96 |
95
|
adantl |
|
97 |
96
|
impcom |
|
98 |
97
|
adantl |
|
99 |
|
neeq2 |
|
100 |
99
|
eqcoms |
|
101 |
100
|
adantr |
|
102 |
98 101
|
mpbird |
|
103 |
82 102
|
jca |
|
104 |
51 103
|
mpancom |
|
105 |
104
|
exp31 |
|
106 |
105
|
com23 |
|
107 |
106
|
ancoms |
|
108 |
50 107
|
syl |
|
109 |
108
|
imp |
|
110 |
109
|
com12 |
|
111 |
110
|
3adant1 |
|
112 |
111
|
imp |
|
113 |
49 112
|
jca |
|
114 |
113
|
ex |
|
115 |
21 114
|
sylbid |
|
116 |
115
|
imp |
|
117 |
|
3simpc |
|
118 |
117
|
adantr |
|
119 |
1 2
|
numclwwlkovq |
|
120 |
118 119
|
syl |
|
121 |
120
|
eleq2d |
|
122 |
|
fveq1 |
|
123 |
122
|
eqeq1d |
|
124 |
|
fveq2 |
|
125 |
124
|
neeq1d |
|
126 |
123 125
|
anbi12d |
|
127 |
126
|
elrab |
|
128 |
121 127
|
bitrdi |
|
129 |
116 128
|
mpbird |
|
130 |
129 4
|
fmptd |
|