Metamath Proof Explorer


Theorem numclwlk2lem2fv

Description: Value of the function R . (Contributed by Alexander van der Vekens, 6-Oct-2018) (Revised by AV, 31-May-2021) (Revised by AV, 1-Nov-2022)

Ref Expression
Hypotheses numclwwlk.v V = Vtx G
numclwwlk.q Q = v V , n w n WWalksN G | w 0 = v lastS w v
numclwwlk.h H = v V , n 2 w v ClWWalksNOn G n | w n 2 v
numclwwlk.r R = x X H N + 2 x prefix N + 1
Assertion numclwlk2lem2fv X V N W X H N + 2 R W = W prefix N + 1

Proof

Step Hyp Ref Expression
1 numclwwlk.v V = Vtx G
2 numclwwlk.q Q = v V , n w n WWalksN G | w 0 = v lastS w v
3 numclwwlk.h H = v V , n 2 w v ClWWalksNOn G n | w n 2 v
4 numclwwlk.r R = x X H N + 2 x prefix N + 1
5 oveq1 x = W x prefix N + 1 = W prefix N + 1
6 simpr X V N W X H N + 2 W X H N + 2
7 ovexd X V N W X H N + 2 W prefix N + 1 V
8 4 5 6 7 fvmptd3 X V N W X H N + 2 R W = W prefix N + 1
9 8 ex X V N W X H N + 2 R W = W prefix N + 1