Step |
Hyp |
Ref |
Expression |
1 |
|
extwwlkfab.v |
|
2 |
|
extwwlkfab.c |
|
3 |
|
extwwlkfab.f |
|
4 |
|
rusgrusgr |
|
5 |
4
|
ad2antlr |
|
6 |
|
simprl |
|
7 |
|
simprr |
|
8 |
1 2 3
|
numclwwlk1lem2 |
|
9 |
5 6 7 8
|
syl3anc |
|
10 |
|
hasheni |
|
11 |
9 10
|
syl |
|
12 |
|
eqid |
|
13 |
12
|
clwwlknonfin |
|
14 |
1
|
eleq1i |
|
15 |
3
|
eleq1i |
|
16 |
13 14 15
|
3imtr4i |
|
17 |
16
|
adantr |
|
18 |
17
|
adantr |
|
19 |
1
|
finrusgrfusgr |
|
20 |
19
|
ancoms |
|
21 |
|
fusgrfis |
|
22 |
20 21
|
syl |
|
23 |
22
|
adantr |
|
24 |
|
eqid |
|
25 |
1 24
|
nbusgrfi |
|
26 |
5 23 6 25
|
syl3anc |
|
27 |
|
hashxp |
|
28 |
18 26 27
|
syl2anc |
|
29 |
1
|
rusgrpropnb |
|
30 |
|
oveq2 |
|
31 |
30
|
fveqeq2d |
|
32 |
31
|
rspccv |
|
33 |
32
|
3ad2ant3 |
|
34 |
29 33
|
syl |
|
35 |
34
|
adantl |
|
36 |
35
|
com12 |
|
37 |
36
|
adantr |
|
38 |
37
|
impcom |
|
39 |
38
|
oveq2d |
|
40 |
|
hashcl |
|
41 |
|
nn0cn |
|
42 |
18 40 41
|
3syl |
|
43 |
20
|
adantr |
|
44 |
|
simplr |
|
45 |
|
ne0i |
|
46 |
45
|
adantr |
|
47 |
46
|
adantl |
|
48 |
1
|
frusgrnn0 |
|
49 |
43 44 47 48
|
syl3anc |
|
50 |
49
|
nn0cnd |
|
51 |
42 50
|
mulcomd |
|
52 |
39 51
|
eqtrd |
|
53 |
11 28 52
|
3eqtrd |
|