Metamath Proof Explorer


Theorem numclwwlk1lem2

Description: The set of double loops of length N on vertex X and the set of closed walks of length less by 2 on X combined with the neighbors of X are equinumerous. (Contributed by Alexander van der Vekens, 6-Jul-2018) (Revised by AV, 29-May-2021) (Revised by AV, 31-Jul-2022) (Proof shortened by AV, 3-Nov-2022)

Ref Expression
Hypotheses extwwlkfab.v V = Vtx G
extwwlkfab.c C = v V , n 2 w v ClWWalksNOn G n | w n 2 = v
extwwlkfab.f F = X ClWWalksNOn G N 2
Assertion numclwwlk1lem2 G USGraph X V N 3 X C N F × G NeighbVtx X

Proof

Step Hyp Ref Expression
1 extwwlkfab.v V = Vtx G
2 extwwlkfab.c C = v V , n 2 w v ClWWalksNOn G n | w n 2 = v
3 extwwlkfab.f F = X ClWWalksNOn G N 2
4 oveq1 x = u x prefix N 2 = u prefix N 2
5 fveq1 x = u x N 1 = u N 1
6 4 5 opeq12d x = u x prefix N 2 x N 1 = u prefix N 2 u N 1
7 6 cbvmptv x X C N x prefix N 2 x N 1 = u X C N u prefix N 2 u N 1
8 1 2 3 7 numclwwlk1lem2f1o G USGraph X V N 3 x X C N x prefix N 2 x N 1 : X C N 1-1 onto F × G NeighbVtx X
9 ovex X C N V
10 9 f1oen x X C N x prefix N 2 x N 1 : X C N 1-1 onto F × G NeighbVtx X X C N F × G NeighbVtx X
11 8 10 syl G USGraph X V N 3 X C N F × G NeighbVtx X