Metamath Proof Explorer


Theorem numclwwlk1lem2f

Description: T is a function, mapping a double loop of length N on vertex X to the ordered pair of the first loop and the successor of X in the second loop, which must be a neighbor of X . (Contributed by Alexander van der Vekens, 19-Sep-2018) (Revised by AV, 29-May-2021) (Proof shortened by AV, 23-Feb-2022) (Revised by AV, 31-Oct-2022)

Ref Expression
Hypotheses extwwlkfab.v V = Vtx G
extwwlkfab.c C = v V , n 2 w v ClWWalksNOn G n | w n 2 = v
extwwlkfab.f F = X ClWWalksNOn G N 2
numclwwlk.t T = u X C N u prefix N 2 u N 1
Assertion numclwwlk1lem2f G USGraph X V N 3 T : X C N F × G NeighbVtx X

Proof

Step Hyp Ref Expression
1 extwwlkfab.v V = Vtx G
2 extwwlkfab.c C = v V , n 2 w v ClWWalksNOn G n | w n 2 = v
3 extwwlkfab.f F = X ClWWalksNOn G N 2
4 numclwwlk.t T = u X C N u prefix N 2 u N 1
5 1 2 3 extwwlkfabel G USGraph X V N 3 u X C N u N ClWWalksN G u prefix N 2 F u N 1 G NeighbVtx X u N 2 = X
6 simpr1 u N ClWWalksN G u prefix N 2 F u N 1 G NeighbVtx X u N 2 = X u prefix N 2 F
7 simpr2 u N ClWWalksN G u prefix N 2 F u N 1 G NeighbVtx X u N 2 = X u N 1 G NeighbVtx X
8 6 7 opelxpd u N ClWWalksN G u prefix N 2 F u N 1 G NeighbVtx X u N 2 = X u prefix N 2 u N 1 F × G NeighbVtx X
9 5 8 syl6bi G USGraph X V N 3 u X C N u prefix N 2 u N 1 F × G NeighbVtx X
10 9 imp G USGraph X V N 3 u X C N u prefix N 2 u N 1 F × G NeighbVtx X
11 10 4 fmptd G USGraph X V N 3 T : X C N F × G NeighbVtx X