Step |
Hyp |
Ref |
Expression |
1 |
|
extwwlkfab.v |
|
2 |
|
extwwlkfab.c |
|
3 |
|
extwwlkfab.f |
|
4 |
|
numclwwlk.t |
|
5 |
1 2 3 4
|
numclwwlk1lem2f |
|
6 |
1 2 3 4
|
numclwwlk1lem2fv |
|
7 |
6
|
ad2antrl |
|
8 |
1 2 3 4
|
numclwwlk1lem2fv |
|
9 |
8
|
ad2antll |
|
10 |
7 9
|
eqeq12d |
|
11 |
|
ovex |
|
12 |
|
fvex |
|
13 |
11 12
|
opth |
|
14 |
|
uzuzle23 |
|
15 |
2
|
2clwwlkel |
|
16 |
|
isclwwlknon |
|
17 |
16
|
anbi1i |
|
18 |
15 17
|
bitrdi |
|
19 |
2
|
2clwwlkel |
|
20 |
|
isclwwlknon |
|
21 |
20
|
anbi1i |
|
22 |
19 21
|
bitrdi |
|
23 |
18 22
|
anbi12d |
|
24 |
14 23
|
sylan2 |
|
25 |
24
|
3adant1 |
|
26 |
1
|
clwwlknbp |
|
27 |
26
|
adantr |
|
28 |
27
|
adantr |
|
29 |
|
simpr |
|
30 |
29
|
adantr |
|
31 |
|
simpr |
|
32 |
29
|
eqcomd |
|
33 |
32
|
adantr |
|
34 |
31 33
|
eqtrd |
|
35 |
28 30 34
|
jca32 |
|
36 |
1
|
clwwlknbp |
|
37 |
36
|
adantr |
|
38 |
37
|
adantr |
|
39 |
|
simpr |
|
40 |
39
|
adantr |
|
41 |
|
simpr |
|
42 |
39
|
eqcomd |
|
43 |
42
|
adantr |
|
44 |
41 43
|
eqtrd |
|
45 |
38 40 44
|
jca32 |
|
46 |
|
eqtr3 |
|
47 |
46
|
expcom |
|
48 |
47
|
ad2antlr |
|
49 |
48
|
com12 |
|
50 |
49
|
ad2antlr |
|
51 |
50
|
imp |
|
52 |
35 45 51
|
syl2an |
|
53 |
52
|
3ad2ant2 |
|
54 |
27
|
simprd |
|
55 |
54
|
adantr |
|
56 |
55
|
eqcomd |
|
57 |
56
|
adantr |
|
58 |
57
|
oveq1d |
|
59 |
58
|
oveq2d |
|
60 |
58
|
oveq2d |
|
61 |
59 60
|
eqeq12d |
|
62 |
61
|
biimpcd |
|
63 |
62
|
adantr |
|
64 |
63
|
impcom |
|
65 |
55
|
oveq1d |
|
66 |
65
|
fveq2d |
|
67 |
66 31
|
eqtrd |
|
68 |
67
|
adantr |
|
69 |
41
|
eqcomd |
|
70 |
69
|
adantl |
|
71 |
58
|
fveq2d |
|
72 |
70 71
|
eqtrd |
|
73 |
68 72
|
eqtrd |
|
74 |
73
|
adantr |
|
75 |
|
lsw |
|
76 |
|
fvoveq1 |
|
77 |
75 76
|
sylan9eq |
|
78 |
26 77
|
syl |
|
79 |
78
|
eqcomd |
|
80 |
79
|
ad3antrrr |
|
81 |
|
lsw |
|
82 |
81
|
adantr |
|
83 |
|
oveq1 |
|
84 |
83
|
eqcoms |
|
85 |
84
|
fveq2d |
|
86 |
85
|
eqeq2d |
|
87 |
86
|
adantl |
|
88 |
82 87
|
mpbird |
|
89 |
36 88
|
syl |
|
90 |
89
|
eqcomd |
|
91 |
90
|
adantr |
|
92 |
91
|
ad2antrl |
|
93 |
80 92
|
eqeq12d |
|
94 |
93
|
biimpd |
|
95 |
94
|
adantld |
|
96 |
95
|
imp |
|
97 |
64 74 96
|
3jca |
|
98 |
97
|
3adant1 |
|
99 |
1
|
clwwlknwrd |
|
100 |
99
|
ad3antrrr |
|
101 |
100
|
3ad2ant2 |
|
102 |
1
|
clwwlknwrd |
|
103 |
102
|
adantr |
|
104 |
103
|
ad2antrl |
|
105 |
104
|
3ad2ant2 |
|
106 |
|
clwwlknlen |
|
107 |
|
eluz2b1 |
|
108 |
|
breq2 |
|
109 |
108
|
eqcoms |
|
110 |
109
|
biimpcd |
|
111 |
107 110
|
simplbiim |
|
112 |
14 106 111
|
syl2imc |
|
113 |
112
|
ad3antrrr |
|
114 |
113
|
impcom |
|
115 |
114
|
3adant3 |
|
116 |
|
2swrd2eqwrdeq |
|
117 |
101 105 115 116
|
syl3anc |
|
118 |
53 98 117
|
mpbir2and |
|
119 |
118
|
3exp |
|
120 |
119
|
3ad2ant3 |
|
121 |
25 120
|
sylbid |
|
122 |
121
|
imp |
|
123 |
13 122
|
syl5bi |
|
124 |
10 123
|
sylbid |
|
125 |
124
|
ralrimivva |
|
126 |
|
dff13 |
|
127 |
5 125 126
|
sylanbrc |
|