Metamath Proof Explorer


Theorem numclwwlk1lem2f1o

Description: T is a 1-1 onto function. (Contributed by Alexander van der Vekens, 26-Sep-2018) (Revised by AV, 29-May-2021) (Revised by AV, 6-Mar-2022)

Ref Expression
Hypotheses extwwlkfab.v V = Vtx G
extwwlkfab.c C = v V , n 2 w v ClWWalksNOn G n | w n 2 = v
extwwlkfab.f F = X ClWWalksNOn G N 2
numclwwlk.t T = u X C N u prefix N 2 u N 1
Assertion numclwwlk1lem2f1o G USGraph X V N 3 T : X C N 1-1 onto F × G NeighbVtx X

Proof

Step Hyp Ref Expression
1 extwwlkfab.v V = Vtx G
2 extwwlkfab.c C = v V , n 2 w v ClWWalksNOn G n | w n 2 = v
3 extwwlkfab.f F = X ClWWalksNOn G N 2
4 numclwwlk.t T = u X C N u prefix N 2 u N 1
5 1 2 3 4 numclwwlk1lem2f1 G USGraph X V N 3 T : X C N 1-1 F × G NeighbVtx X
6 1 2 3 4 numclwwlk1lem2fo G USGraph X V N 3 T : X C N onto F × G NeighbVtx X
7 df-f1o T : X C N 1-1 onto F × G NeighbVtx X T : X C N 1-1 F × G NeighbVtx X T : X C N onto F × G NeighbVtx X
8 5 6 7 sylanbrc G USGraph X V N 3 T : X C N 1-1 onto F × G NeighbVtx X