Step |
Hyp |
Ref |
Expression |
1 |
|
extwwlkfab.v |
|
2 |
|
extwwlkfab.c |
|
3 |
|
extwwlkfab.f |
|
4 |
|
numclwwlk.t |
|
5 |
1 2 3 4
|
numclwwlk1lem2f |
|
6 |
|
elxp |
|
7 |
1 2 3
|
numclwwlk1lem2foa |
|
8 |
7
|
com12 |
|
9 |
8
|
adantl |
|
10 |
9
|
imp |
|
11 |
|
simpl |
|
12 |
|
fveq2 |
|
13 |
12
|
eqeq2d |
|
14 |
1 2 3 4
|
numclwwlk1lem2fv |
|
15 |
14
|
adantr |
|
16 |
15
|
eqeq2d |
|
17 |
13 16
|
sylan9bbr |
|
18 |
|
simprll |
|
19 |
1
|
nbgrisvtx |
|
20 |
3
|
eleq2i |
|
21 |
|
uz3m2nn |
|
22 |
21
|
nnne0d |
|
23 |
22
|
3ad2ant3 |
|
24 |
|
eqid |
|
25 |
1 24
|
clwwlknonel |
|
26 |
23 25
|
syl |
|
27 |
20 26
|
syl5bb |
|
28 |
|
df-3an |
|
29 |
27 28
|
bitrdi |
|
30 |
|
simplll |
|
31 |
|
s1cl |
|
32 |
31
|
adantr |
|
33 |
32
|
adantl |
|
34 |
33
|
adantr |
|
35 |
|
s1cl |
|
36 |
35
|
adantl |
|
37 |
|
ccatass |
|
38 |
37
|
oveq1d |
|
39 |
30 34 36 38
|
syl3anc |
|
40 |
|
ccatcl |
|
41 |
33 35 40
|
syl2an |
|
42 |
|
simpr |
|
43 |
42
|
eqcomd |
|
44 |
43
|
adantr |
|
45 |
44
|
adantr |
|
46 |
|
pfxccatid |
|
47 |
30 41 45 46
|
syl3anc |
|
48 |
39 47
|
eqtr2d |
|
49 |
|
1e2m1 |
|
50 |
49
|
a1i |
|
51 |
50
|
oveq2d |
|
52 |
|
eluzelcn |
|
53 |
|
2cnd |
|
54 |
|
1cnd |
|
55 |
52 53 54
|
subsubd |
|
56 |
51 55
|
eqtrd |
|
57 |
56
|
adantl |
|
58 |
57
|
adantl |
|
59 |
58
|
adantr |
|
60 |
59
|
fveq2d |
|
61 |
|
simpll |
|
62 |
|
simprl |
|
63 |
62
|
anim1i |
|
64 |
|
ccatw2s1p2 |
|
65 |
61 63 64
|
syl2anc |
|
66 |
60 65
|
eqtr2d |
|
67 |
48 66
|
opeq12d |
|
68 |
67
|
exp31 |
|
69 |
68
|
3ad2antl1 |
|
70 |
69
|
adantr |
|
71 |
70
|
com12 |
|
72 |
71
|
3adant1 |
|
73 |
29 72
|
sylbid |
|
74 |
73
|
com23 |
|
75 |
19 74
|
syl5 |
|
76 |
75
|
com13 |
|
77 |
76
|
imp |
|
78 |
77
|
adantl |
|
79 |
78
|
imp |
|
80 |
79
|
adantl |
|
81 |
18 80
|
eqtrd |
|
82 |
11 17 81
|
rspcedvd |
|
83 |
10 82
|
mpancom |
|
84 |
83
|
ex |
|
85 |
84
|
exlimivv |
|
86 |
6 85
|
sylbi |
|
87 |
86
|
impcom |
|
88 |
87
|
ralrimiva |
|
89 |
|
dffo3 |
|
90 |
5 88 89
|
sylanbrc |
|