Step |
Hyp |
Ref |
Expression |
1 |
|
extwwlkfab.v |
|
2 |
|
extwwlkfab.c |
|
3 |
|
extwwlkfab.f |
|
4 |
|
simpl2 |
|
5 |
1
|
nbgrisvtx |
|
6 |
5
|
ad2antll |
|
7 |
|
simpl3 |
|
8 |
|
nbgrsym |
|
9 |
|
eqid |
|
10 |
9
|
nbusgreledg |
|
11 |
10
|
biimpd |
|
12 |
8 11
|
syl5bi |
|
13 |
12
|
adantld |
|
14 |
13
|
3ad2ant1 |
|
15 |
14
|
imp |
|
16 |
|
simprl |
|
17 |
16 3
|
eleqtrdi |
|
18 |
1 9
|
clwwlknonex2 |
|
19 |
4 6 7 15 17 18
|
syl311anc |
|
20 |
3
|
eleq2i |
|
21 |
|
uz3m2nn |
|
22 |
21
|
nnne0d |
|
23 |
1 9
|
clwwlknonel |
|
24 |
22 23
|
syl |
|
25 |
24
|
3ad2ant3 |
|
26 |
20 25
|
syl5bb |
|
27 |
|
3simpa |
|
28 |
27
|
adantr |
|
29 |
|
simp32 |
|
30 |
29 5
|
anim12i |
|
31 |
|
simpl33 |
|
32 |
28 30 31
|
3jca |
|
33 |
32
|
3exp1 |
|
34 |
33
|
3ad2ant1 |
|
35 |
34
|
imp |
|
36 |
35
|
3adant3 |
|
37 |
36
|
com12 |
|
38 |
26 37
|
sylbid |
|
39 |
38
|
imp32 |
|
40 |
|
numclwwlk1lem2foalem |
|
41 |
39 40
|
syl |
|
42 |
|
eleq1a |
|
43 |
16 42
|
syl |
|
44 |
|
eleq1a |
|
45 |
44
|
ad2antll |
|
46 |
|
idd |
|
47 |
43 45 46
|
3anim123d |
|
48 |
41 47
|
mpd |
|
49 |
1 2 3
|
extwwlkfabel |
|
50 |
49
|
adantr |
|
51 |
19 48 50
|
mpbir2and |
|
52 |
51
|
ex |
|