| Step |
Hyp |
Ref |
Expression |
| 1 |
|
extwwlkfab.v |
|
| 2 |
|
extwwlkfab.c |
|
| 3 |
|
extwwlkfab.f |
|
| 4 |
|
simpl2 |
|
| 5 |
1
|
nbgrisvtx |
|
| 6 |
5
|
ad2antll |
|
| 7 |
|
simpl3 |
|
| 8 |
|
nbgrsym |
|
| 9 |
|
eqid |
|
| 10 |
9
|
nbusgreledg |
|
| 11 |
10
|
biimpd |
|
| 12 |
8 11
|
biimtrid |
|
| 13 |
12
|
adantld |
|
| 14 |
13
|
3ad2ant1 |
|
| 15 |
14
|
imp |
|
| 16 |
|
simprl |
|
| 17 |
16 3
|
eleqtrdi |
|
| 18 |
1 9
|
clwwlknonex2 |
|
| 19 |
4 6 7 15 17 18
|
syl311anc |
|
| 20 |
3
|
eleq2i |
|
| 21 |
|
uz3m2nn |
|
| 22 |
21
|
nnne0d |
|
| 23 |
1 9
|
clwwlknonel |
|
| 24 |
22 23
|
syl |
|
| 25 |
24
|
3ad2ant3 |
|
| 26 |
20 25
|
bitrid |
|
| 27 |
|
3simpa |
|
| 28 |
27
|
adantr |
|
| 29 |
|
simp32 |
|
| 30 |
29 5
|
anim12i |
|
| 31 |
|
simpl33 |
|
| 32 |
28 30 31
|
3jca |
|
| 33 |
32
|
3exp1 |
|
| 34 |
33
|
3ad2ant1 |
|
| 35 |
34
|
imp |
|
| 36 |
35
|
3adant3 |
|
| 37 |
36
|
com12 |
|
| 38 |
26 37
|
sylbid |
|
| 39 |
38
|
imp32 |
|
| 40 |
|
numclwwlk1lem2foalem |
|
| 41 |
39 40
|
syl |
|
| 42 |
|
eleq1a |
|
| 43 |
16 42
|
syl |
|
| 44 |
|
eleq1a |
|
| 45 |
44
|
ad2antll |
|
| 46 |
|
idd |
|
| 47 |
43 45 46
|
3anim123d |
|
| 48 |
41 47
|
mpd |
|
| 49 |
1 2 3
|
extwwlkfabel |
|
| 50 |
49
|
adantr |
|
| 51 |
19 48 50
|
mpbir2and |
|
| 52 |
51
|
ex |
|