Metamath Proof Explorer


Theorem numclwwlk1lem2fv

Description: Value of the function T . (Contributed by Alexander van der Vekens, 20-Sep-2018) (Revised by AV, 29-May-2021) (Revised by AV, 31-Oct-2022)

Ref Expression
Hypotheses extwwlkfab.v V = Vtx G
extwwlkfab.c C = v V , n 2 w v ClWWalksNOn G n | w n 2 = v
extwwlkfab.f F = X ClWWalksNOn G N 2
numclwwlk.t T = u X C N u prefix N 2 u N 1
Assertion numclwwlk1lem2fv W X C N T W = W prefix N 2 W N 1

Proof

Step Hyp Ref Expression
1 extwwlkfab.v V = Vtx G
2 extwwlkfab.c C = v V , n 2 w v ClWWalksNOn G n | w n 2 = v
3 extwwlkfab.f F = X ClWWalksNOn G N 2
4 numclwwlk.t T = u X C N u prefix N 2 u N 1
5 oveq1 u = W u prefix N 2 = W prefix N 2
6 fveq1 u = W u N 1 = W N 1
7 5 6 opeq12d u = W u prefix N 2 u N 1 = W prefix N 2 W N 1
8 opex W prefix N 2 W N 1 V
9 7 4 8 fvmpt W X C N T W = W prefix N 2 W N 1