Step |
Hyp |
Ref |
Expression |
1 |
|
numclwwlk.v |
|
2 |
|
numclwwlk.q |
|
3 |
|
numclwwlk.h |
|
4 |
1 2
|
numclwwlkovq |
|
5 |
4
|
3adant1 |
|
6 |
5
|
eleq2d |
|
7 |
|
fveq1 |
|
8 |
7
|
eqeq1d |
|
9 |
|
fveq2 |
|
10 |
9
|
neeq1d |
|
11 |
8 10
|
anbi12d |
|
12 |
11
|
elrab |
|
13 |
6 12
|
bitrdi |
|
14 |
|
simpl1 |
|
15 |
|
eqid |
|
16 |
1 15
|
wwlknp |
|
17 |
|
peano2nn |
|
18 |
17
|
adantl |
|
19 |
|
simpl |
|
20 |
18 19
|
jca |
|
21 |
20
|
ex |
|
22 |
21
|
3adant3 |
|
23 |
16 22
|
syl |
|
24 |
|
lswlgt0cl |
|
25 |
23 24
|
syl6 |
|
26 |
25
|
adantr |
|
27 |
26
|
com12 |
|
28 |
27
|
3ad2ant3 |
|
29 |
28
|
imp |
|
30 |
|
eleq1 |
|
31 |
30
|
biimprd |
|
32 |
31
|
ad2antrl |
|
33 |
32
|
com12 |
|
34 |
33
|
3ad2ant2 |
|
35 |
34
|
imp |
|
36 |
|
neeq2 |
|
37 |
36
|
eqcoms |
|
38 |
37
|
biimpa |
|
39 |
38
|
adantl |
|
40 |
39
|
adantl |
|
41 |
29 35 40
|
3jca |
|
42 |
1 15
|
frcond2 |
|
43 |
14 41 42
|
sylc |
|
44 |
|
simpl |
|
45 |
44
|
ad2antlr |
|
46 |
|
simpr |
|
47 |
|
nnnn0 |
|
48 |
47
|
3ad2ant3 |
|
49 |
48
|
ad2antrr |
|
50 |
45 46 49
|
3jca |
|
51 |
1 15
|
wwlksext2clwwlk |
|
52 |
51
|
3adant3 |
|
53 |
52
|
imp |
|
54 |
50 53
|
sylan |
|
55 |
1
|
wwlknbp |
|
56 |
55
|
simp3d |
|
57 |
56
|
ad2antrl |
|
58 |
57
|
ad2antrr |
|
59 |
46
|
adantr |
|
60 |
|
2z |
|
61 |
|
nn0pzuz |
|
62 |
47 60 61
|
sylancl |
|
63 |
62
|
3ad2ant3 |
|
64 |
63
|
ad3antrrr |
|
65 |
|
simpr |
|
66 |
1 15
|
clwwlkext2edg |
|
67 |
58 59 64 65 66
|
syl31anc |
|
68 |
54 67
|
impbida |
|
69 |
46 1
|
eleqtrdi |
|
70 |
38
|
anim2i |
|
71 |
70
|
ad2antlr |
|
72 |
71
|
simprd |
|
73 |
|
numclwwlk2lem1lem |
|
74 |
69 45 72 73
|
syl3anc |
|
75 |
|
eqeq2 |
|
76 |
75
|
eqcoms |
|
77 |
76
|
ad2antrl |
|
78 |
77
|
ad2antlr |
|
79 |
74
|
simpld |
|
80 |
79
|
neeq2d |
|
81 |
78 80
|
anbi12d |
|
82 |
74 81
|
mpbird |
|
83 |
|
nncn |
|
84 |
|
2cnd |
|
85 |
83 84
|
pncand |
|
86 |
85
|
3ad2ant3 |
|
87 |
86
|
ad2antrr |
|
88 |
87
|
fveq2d |
|
89 |
88
|
neeq1d |
|
90 |
89
|
anbi2d |
|
91 |
82 90
|
mpbird |
|
92 |
91
|
biantrud |
|
93 |
62
|
anim2i |
|
94 |
93
|
3adant1 |
|
95 |
94
|
ad2antrr |
|
96 |
3
|
numclwwlkovh |
|
97 |
95 96
|
syl |
|
98 |
97
|
eleq2d |
|
99 |
|
fveq1 |
|
100 |
99
|
eqeq1d |
|
101 |
|
fveq1 |
|
102 |
101 99
|
neeq12d |
|
103 |
100 102
|
anbi12d |
|
104 |
103
|
elrab |
|
105 |
98 104
|
bitr2di |
|
106 |
68 92 105
|
3bitrd |
|
107 |
106
|
reubidva |
|
108 |
43 107
|
mpbid |
|
109 |
108
|
ex |
|
110 |
13 109
|
sylbid |
|