Metamath Proof Explorer


Theorem numclwwlk2lem1lem

Description: Lemma for numclwwlk2lem1 . (Contributed by Alexander van der Vekens, 3-Oct-2018) (Revised by AV, 27-May-2021) (Revised by AV, 15-Mar-2022)

Ref Expression
Assertion numclwwlk2lem1lem X Vtx G W N WWalksN G lastS W W 0 W ++ ⟨“ X ”⟩ 0 = W 0 W ++ ⟨“ X ”⟩ N W 0

Proof

Step Hyp Ref Expression
1 wwlknbp1 W N WWalksN G N 0 W Word Vtx G W = N + 1
2 simpl2 N 0 W Word Vtx G W = N + 1 X Vtx G lastS W W 0 W Word Vtx G
3 s1cl X Vtx G ⟨“ X ”⟩ Word Vtx G
4 3 ad2antrl N 0 W Word Vtx G W = N + 1 X Vtx G lastS W W 0 ⟨“ X ”⟩ Word Vtx G
5 nn0p1gt0 N 0 0 < N + 1
6 5 3ad2ant1 N 0 W Word Vtx G W = N + 1 0 < N + 1
7 6 adantr N 0 W Word Vtx G W = N + 1 X Vtx G lastS W W 0 0 < N + 1
8 breq2 W = N + 1 0 < W 0 < N + 1
9 8 3ad2ant3 N 0 W Word Vtx G W = N + 1 0 < W 0 < N + 1
10 9 adantr N 0 W Word Vtx G W = N + 1 X Vtx G lastS W W 0 0 < W 0 < N + 1
11 7 10 mpbird N 0 W Word Vtx G W = N + 1 X Vtx G lastS W W 0 0 < W
12 ccatfv0 W Word Vtx G ⟨“ X ”⟩ Word Vtx G 0 < W W ++ ⟨“ X ”⟩ 0 = W 0
13 2 4 11 12 syl3anc N 0 W Word Vtx G W = N + 1 X Vtx G lastS W W 0 W ++ ⟨“ X ”⟩ 0 = W 0
14 oveq1 W = N + 1 W 1 = N + 1 - 1
15 14 3ad2ant3 N 0 W Word Vtx G W = N + 1 W 1 = N + 1 - 1
16 nn0cn N 0 N
17 pncan1 N N + 1 - 1 = N
18 16 17 syl N 0 N + 1 - 1 = N
19 18 3ad2ant1 N 0 W Word Vtx G W = N + 1 N + 1 - 1 = N
20 15 19 eqtr2d N 0 W Word Vtx G W = N + 1 N = W 1
21 20 adantr N 0 W Word Vtx G W = N + 1 X Vtx G N = W 1
22 21 fveq2d N 0 W Word Vtx G W = N + 1 X Vtx G W ++ ⟨“ X ”⟩ N = W ++ ⟨“ X ”⟩ W 1
23 simpl2 N 0 W Word Vtx G W = N + 1 X Vtx G W Word Vtx G
24 3 adantl N 0 W Word Vtx G W = N + 1 X Vtx G ⟨“ X ”⟩ Word Vtx G
25 6 adantr N 0 W Word Vtx G W = N + 1 X Vtx G 0 < N + 1
26 9 adantr N 0 W Word Vtx G W = N + 1 X Vtx G 0 < W 0 < N + 1
27 25 26 mpbird N 0 W Word Vtx G W = N + 1 X Vtx G 0 < W
28 hashneq0 W Word Vtx G 0 < W W
29 28 bicomd W Word Vtx G W 0 < W
30 29 3ad2ant2 N 0 W Word Vtx G W = N + 1 W 0 < W
31 30 adantr N 0 W Word Vtx G W = N + 1 X Vtx G W 0 < W
32 27 31 mpbird N 0 W Word Vtx G W = N + 1 X Vtx G W
33 ccatval1lsw W Word Vtx G ⟨“ X ”⟩ Word Vtx G W W ++ ⟨“ X ”⟩ W 1 = lastS W
34 23 24 32 33 syl3anc N 0 W Word Vtx G W = N + 1 X Vtx G W ++ ⟨“ X ”⟩ W 1 = lastS W
35 22 34 eqtr2d N 0 W Word Vtx G W = N + 1 X Vtx G lastS W = W ++ ⟨“ X ”⟩ N
36 35 neeq1d N 0 W Word Vtx G W = N + 1 X Vtx G lastS W W 0 W ++ ⟨“ X ”⟩ N W 0
37 36 biimpd N 0 W Word Vtx G W = N + 1 X Vtx G lastS W W 0 W ++ ⟨“ X ”⟩ N W 0
38 37 impr N 0 W Word Vtx G W = N + 1 X Vtx G lastS W W 0 W ++ ⟨“ X ”⟩ N W 0
39 13 38 jca N 0 W Word Vtx G W = N + 1 X Vtx G lastS W W 0 W ++ ⟨“ X ”⟩ 0 = W 0 W ++ ⟨“ X ”⟩ N W 0
40 39 exp32 N 0 W Word Vtx G W = N + 1 X Vtx G lastS W W 0 W ++ ⟨“ X ”⟩ 0 = W 0 W ++ ⟨“ X ”⟩ N W 0
41 1 40 syl W N WWalksN G X Vtx G lastS W W 0 W ++ ⟨“ X ”⟩ 0 = W 0 W ++ ⟨“ X ”⟩ N W 0
42 41 3imp21 X Vtx G W N WWalksN G lastS W W 0 W ++ ⟨“ X ”⟩ 0 = W 0 W ++ ⟨“ X ”⟩ N W 0