Step |
Hyp |
Ref |
Expression |
1 |
|
numclwwlk3lem2.c |
|
2 |
|
numclwwlk3lem2.h |
|
3 |
1 2
|
numclwwlk3lem2lem |
|
4 |
3
|
adantll |
|
5 |
4
|
fveq2d |
|
6 |
2
|
numclwwlkovh0 |
|
7 |
6
|
adantll |
|
8 |
|
eqid |
|
9 |
8
|
fusgrvtxfi |
|
10 |
9
|
ad2antrr |
|
11 |
8
|
clwwlknonfin |
|
12 |
|
rabfi |
|
13 |
10 11 12
|
3syl |
|
14 |
7 13
|
eqeltrd |
|
15 |
1
|
2clwwlk |
|
16 |
15
|
adantll |
|
17 |
|
rabfi |
|
18 |
10 11 17
|
3syl |
|
19 |
16 18
|
eqeltrd |
|
20 |
7 16
|
ineq12d |
|
21 |
|
inrab |
|
22 |
|
exmid |
|
23 |
|
ianor |
|
24 |
|
nne |
|
25 |
24
|
orbi1i |
|
26 |
23 25
|
bitri |
|
27 |
22 26
|
mpbir |
|
28 |
27
|
rgenw |
|
29 |
|
rabeq0 |
|
30 |
28 29
|
mpbir |
|
31 |
21 30
|
eqtri |
|
32 |
20 31
|
eqtrdi |
|
33 |
|
hashun |
|
34 |
14 19 32 33
|
syl3anc |
|
35 |
5 34
|
eqtrd |
|