Metamath Proof Explorer


Theorem numclwwlk5lem

Description: Lemma for numclwwlk5 . (Contributed by Alexander van der Vekens, 7-Oct-2018) (Revised by AV, 2-Jun-2021) (Revised by AV, 7-Mar-2022)

Ref Expression
Hypothesis numclwwlk3.v V = Vtx G
Assertion numclwwlk5lem G RegUSGraph K X V K 0 2 K 1 X ClWWalksNOn G 2 mod 2 = 1

Proof

Step Hyp Ref Expression
1 numclwwlk3.v V = Vtx G
2 1 eleq2i X V X Vtx G
3 clwwlknon2num G RegUSGraph K X Vtx G X ClWWalksNOn G 2 = K
4 2 3 sylan2b G RegUSGraph K X V X ClWWalksNOn G 2 = K
5 4 3adant3 G RegUSGraph K X V K 0 X ClWWalksNOn G 2 = K
6 oveq1 X ClWWalksNOn G 2 = K X ClWWalksNOn G 2 mod 2 = K mod 2
7 6 ad2antrr X ClWWalksNOn G 2 = K G RegUSGraph K X V K 0 2 K 1 X ClWWalksNOn G 2 mod 2 = K mod 2
8 2prm 2
9 nn0z K 0 K
10 modprm1div 2 K K mod 2 = 1 2 K 1
11 8 9 10 sylancr K 0 K mod 2 = 1 2 K 1
12 11 biimprd K 0 2 K 1 K mod 2 = 1
13 12 3ad2ant3 G RegUSGraph K X V K 0 2 K 1 K mod 2 = 1
14 13 adantl X ClWWalksNOn G 2 = K G RegUSGraph K X V K 0 2 K 1 K mod 2 = 1
15 14 imp X ClWWalksNOn G 2 = K G RegUSGraph K X V K 0 2 K 1 K mod 2 = 1
16 7 15 eqtrd X ClWWalksNOn G 2 = K G RegUSGraph K X V K 0 2 K 1 X ClWWalksNOn G 2 mod 2 = 1
17 16 ex X ClWWalksNOn G 2 = K G RegUSGraph K X V K 0 2 K 1 X ClWWalksNOn G 2 mod 2 = 1
18 5 17 mpancom G RegUSGraph K X V K 0 2 K 1 X ClWWalksNOn G 2 mod 2 = 1