Step |
Hyp |
Ref |
Expression |
1 |
|
numclwwlk6.v |
|
2 |
1
|
finrusgrfusgr |
|
3 |
2
|
3adant2 |
|
4 |
|
prmnn |
|
5 |
4
|
adantr |
|
6 |
1
|
numclwwlk4 |
|
7 |
3 5 6
|
syl2an |
|
8 |
7
|
oveq1d |
|
9 |
5
|
adantl |
|
10 |
|
simp3 |
|
11 |
10
|
adantr |
|
12 |
11
|
adantr |
|
13 |
1
|
clwwlknonfin |
|
14 |
|
hashcl |
|
15 |
12 13 14
|
3syl |
|
16 |
15
|
nn0zd |
|
17 |
16
|
ralrimiva |
|
18 |
9 11 17
|
modfsummod |
|
19 |
|
simpl |
|
20 |
|
simpr |
|
21 |
20
|
anim1ci |
|
22 |
|
3anass |
|
23 |
21 22
|
sylibr |
|
24 |
1
|
numclwwlk5 |
|
25 |
19 23 24
|
syl2an2r |
|
26 |
25
|
sumeq2dv |
|
27 |
26
|
oveq1d |
|
28 |
18 27
|
eqtrd |
|
29 |
|
1cnd |
|
30 |
|
fsumconst |
|
31 |
10 29 30
|
syl2an |
|
32 |
|
hashcl |
|
33 |
32
|
nn0red |
|
34 |
|
ax-1rid |
|
35 |
33 34
|
syl |
|
36 |
35
|
3ad2ant3 |
|
37 |
36
|
adantr |
|
38 |
31 37
|
eqtrd |
|
39 |
38
|
oveq1d |
|
40 |
8 28 39
|
3eqtrd |
|